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Reservoir simulation is becoming a standard practice for oil and gas companies, helping with decision 
making, reducing reservoir characterization uncertainties, and better managing hydrocarbon resources. 
The reservoir model sizes can reach multibillion grid cells, which led Saudi Aramco to develop an in-
house massively parallel reservoir simulator, as well as a pre- and post-reservoir simulation environment1. 
Compared to structured grid modeling, unstructured grid modeling and billon cell pre- and post-simu-
lation processing of reservoir simulation provides engineers with advanced modeling capabilities to 
represent complex well geometries and near wellbore modeling. Mapping between structured and un-
structured (2.5D) domains is not a straightforward task. The indexing in unstructured grids makes 
creating property modifiers, conducting near wellbore modeling, and local grid refinement difficult.

We present a developed workflow to automatically transform the modeling of property modifiers, near 
wellbore modeling and local grid refinement between the structured and unstructured domains. Sever-
al computational geometry algorithms were developed for efficiency and accuracy, which will preprocess 
the corners of the top layer cells into data structures. To map regions of interest between domains, the 
algorithms find all corner points inside them. The regions are translated using the algorithms and the 
results are exported in the unstructured format. 

The two challenges are that the number of corner points is massive, therefore, a brute-force search 
— even for a simple region of interest is expensive — and irregular regions of interests result in very 
costly search complexity. We address these by preprocessing the input data in the form of range trees. 
We also propose a free-shape polygonal search strategy to find all corner points in the regions of interest.

The range tree algorithm provided a fast and robust workflow to perform the transformation from 
structured to unstructured gridding domains, while providing ease of use with a visual component, to 
aid with property transformation, near wellbore modeling, and local grid refinement. The algorithm’s 
performance was measured using the time complexity of the preprocessing time, query time, and the 
space complexity.

The range tree approach is first compared to the other approaches, requiring only O(log(n)+k) oper-
ations, compared to the O(n) of linear search. It takes a costly O(nlog(n)) time to preprocess the data into 
the range tree, however, that is a one-time cost, as well as requiring O(nlog(n)) space in memory. 

This work is a major milestone to promote and support the unstructured grid modeling approach for 
large- and small-scale reservoir simulation models. The algorithm will provide engineers with a sim-
plified workflow and smooth transitioning, allowing advanced capabilities to model complex well ge-
ometries and near wellbore modeling, while preserving complex geological features. In addition, this 
algorithm provides the building blocks in facilitating the migration and conversion of existing structured 
simulation models.
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Introduction
Reservoir simulation is one of the commonly used tools in the oil and gas industry to estimate recovery and con-
duct studies to support strategic decisions. It is effectively used for the development, production optimization, and 
management of oil fields. This simulation also gives the reservoir engineers the ability to assess multiple production 
scenarios to maximize oil recovery and minimize operational cost.

To solve for finite-difference fluid flow (oil, gas, and water) equations for hydrocarbon-bearing formations, a 
geological model is built from different sources of data sources characterizing the formations. A dynamic model 
is then built by integrating the static geological model with field dynamic data — pressure, fluid rates, and prop-
erties, and development strategies. 

The reservoir model needs to be discretized into smaller units to solve fluid flow equations to calibrate and history 
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match historical field data, and perform predictions. The 
process of discretization is called “gridding,” and the 
resulting discretized model is referred to as a “numer-
ical grid.” The complexity of the reservoir model grid 
discretization is governed by the complexity of the geol-
ogy, i.e., fractures, faults, pitchouts, lateral, and vertical 
heterogeneity, etc. Therefore, different gridding schemes 
were used, such as structured and unstructured gridding.

Structured grids are three-dimensional (3D) Cartesian 
grids, which can be defined using the number of cells 
in each dimension (x, y, and z directions). Accordingly, 
structured grids inherit the ease of cell indexing from its 
Cartesian nature. For example, a triplet of three integers 
(i, j, and k) can reference cells. Furthermore, a region can 
also be defined using two triplets of the form (istart, jstart, 
and kstart) and (iend, jend, and kend). The region in this case 
is nothing but a rectangular cuboid; however, structured 
grids have a few caveats when it comes to modeling 
complex reservoir features such as fractures, faults, and 
near wellbore regions. This is due to cells being limited 
in their shapes, i.e., Cartesian nature of the grid. They 
cannot take more complicated and detailed shapes to 
represent and preserve complex geological features. For 
these reasons, unstructured grids were introduced, and 
found to be more suitable.

Unstructured grids are grids where cells are allowed to 
take any polyhedral shape. This gridding scheme allows 
the modeling of complex geological features and near 
wellbore modeling. Compared to structured gridding, 
unstructured gridding offers computational efficiency and 
accuracy when local grid refinement/coarsening is used. 
One of the flavors of unstructured gridding schemes is 
the 2.5D unstructured gridding approach. It is a special 
case, where the grid is divided into identical layers in 
terms of geometry and number of layers. 

The cells within a layer take prism-like shapes, having 
tops and bottoms that can be of any polygon shape. 
Subsequently, we will be referring to them simply as “un-
structured grids.” The 2.5D unstructured grids provide 
a compromise between structured and fully unstructured 
grids, having the freedom in the geometrical shapes 
in lateral directions, with retention of structure in the 
vertical direction. 

These features overcome the aforementioned lim-
itations of structured grids and avoid the unnecessary 
complexity of the fully unstructured gridding scheme; 
however, with the flexibility of cell shapes comes differ-
ent challenges. In particular, unstructured grids lose 
the ease of indexing in the x and y directions, and cells 
within a layer can only be indexed using an irregular 
numbering scheme. Instead, each cell has a unique ID 
that may not necessarily be in sequence or following a 
certain order. In addition, these IDs do not encode any 
spatial reference of the whereabouts of the cells within 
the grid. Consequently, to specify a single region in an 
unstructured grid, one must list contiguous cell IDs, 
which is an arduous task to do manually.

In this article, we leverage algorithms from computa-
tional geometry to alleviate the cell’s indexing problem 
in unstructured grids by: 

• Efficiently converting regions from the structured 
domain to the unstructured domain.

• Providing the ability to select arbitrary prism-like 
regions in unstructured grids.

• Developing a graphical interface to interactively 
make region selections.

The algorithm could also be used with the structured 
format to select arbitrary regions rather than only cuboid 
ones. As the basis for the proposed solution, 2D range 
trees were used. These 2D range trees are data struc-
tures to hold d-dimensional Euclidean points, where the 
points are dictionary sorted by their coordinates. They 
are used to answer orthogonal range reporting queries; 
that is, each query is the Cartesian product of intervals 
of real numbers. They were developed independently 
by a handful of authors2-5. 

This article will describe how the algorithms are used, 
as well as describe how to implement fractional cascad-
ing4, 6 to improve their query time complexity, while not 
increasing the space complexities, nor the preprocessing 
time complexity.

Problem Definition
Let us start by properly defining the problem: A 2.5D 
unstructured grid is given — where the 2.5D grid means 
all the layers are identical in the x and y directions — and 
a prism-like region, R, specified with a triplet of (x, y, and 
z) coordinates. The top and bottom sides of R are the 
same polygon, P, and the height of the top and bottom 
is specified by the layer number, Fig. 1. The goal is to 
find the IDs of all the cells of the grid that intersect R.

Usually, the grid will be queried many times with differ-
ent regions. From the computational efficiency viewpoint, 
the algorithm efficiency heavily depends on the reservoir 
model size — number of cells — and the irregularity of 
the selected regions. In simple cases, a handful of queries 
will not take more than a few seconds when it is solved, 

 
 

 
 

Fig. 1  A region of a 2.5D unstructured grid. 
 
 
 

 
 
Fig. 2  A sample image showing that a cell intersects P if one of its corners is inside P. 
 

 
 

Fig. 3  None of the corners of the bottom left cell are inside, yet it still intersects. 
 
 
 

Fig. 1  A region of a 2.5D unstructured grid.
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by simply checking R against every cell. This problem 
becomes time-consuming, less efficient, and computa-
tionally expensive with the increasing complexity of the 
region and model’s number of cells. A viable solution 
was devised and is described later.

Simplification
The first step toward computational efficiency is sim-
plifying the problem to a 2D problem. R is simply con-
sidered a prism. Therefore, its layers can be specified in 
the usual way, and we can focus on the problem in the 
lateral directions. Subsequently, we effectively reduced 
this problem from a 3D problem to a 2D problem.

We can further simplify the problem by observing that 
a cell intersects P if one of its corners is inside P, Fig. 
2. This turns it into the simpler problem of finding the 
points that lie inside P. This type of problem is called 
polygonal range searching. Therefore, n will denote the 
number of points in a single layer of our grid.

There are exceptions to this simplification such as edge 
cases, Fig. 3. These cases occur when a cell does not 
have any corners inside P, but the edges of both the cell 
and P intersect, e.g., if a corner of P is inside the cell. 
This can be remedied by checking nearby neighbors if 
they intersect P, and then adding them to the solution if 

they do. We can precompute which cells in a layer are 
neighboring each other to save time.

Approaches
Solving the problem in the naïve way, where every point 
is checked whether it lies in P or not, is efficient mem-
ory-wise, as it uses no memory overhead, and also is 
efficient time-wise if a query is made once, or only a 
handful of times. The complexity of the query time of 
this solution is O(n), while the space complexity is O(k) 
for a query (and O(n) for storing the points), where k is 
the number of points inside P. (This is in fact the optimal 
solution, and we cannot do any better.) Consequently, 
if the model size is large, say 5 million points per layer, 
and with 200 regions to query, then 1 billion checks are 
required, going over all the points. 

This is why there is a need for preprocessing the points to 
satisfy all these queries. There is no algorithm tailored for 
polygonal range searching, specifically in the literature. 
It can be reduced to other problems via triangulation 
or other means. We opted to reduce the problem in a 
different way: To find the bounding box (B) of P, apply 
a 2D orthogonal range searching algorithm, and then 
filter the results with the winding number algorithm. 
Figure 4 shows an example of a P and it’s B.

For efficiency, the winding number algorithm should 
be embedded within the orthogonal range searching 
during appending to the results list. This is to decrease 
the amount of extra memory to be used. It is counter-
productive to include the points inside B but outside P.

There are two main approaches to solving the orthog-
onal range searching: k-d trees and 2D range trees. We 
will be using the 2D range tree algorithm in this article. 
The 2D range trees have a preprocessing time cost of 
O(nlog(n)), which we only have to do once, and a query 
time complexity of O(log(n)+k), which is extremely fast 
in comparison to the O(n) of the naïve method. 
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Fig. 2  A sample image showing that a cell intersects P if one of  
           its corners is inside P.
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Fig. 3  None of the corners of the bottom left cell are inside,  
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Fig. 4  The P shown in red, with its B in white. 
 
 
 

 
 

Fig. 5  A 2D range tree, where each node has an associated tree7. 
 
 
 

 
 

Fig. 6  Example of fractional cascading (some omitted)8. 
 
 
 

Fig. 4  The P shown in red, with its B in white.
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The trade-off is in the space cost, where the naïve 
method has a space complexity of O(n), while the 2D 
range tree has a space complexity of O(nlog(n)). This is 
a point that needs to be emphasized: The tree must be 
saved as a file after construction, to be used again for 
later queries. Otherwise, it would have to be constructed 
every time there is a need to query a set of regions.

2D Range Tree
The idea of a 2D range tree, T, is to have a binary tree 
ordered by the x coordinates of the points, and then each 
node, N of T, contains a binary tree called the associated 
tree A(N), Fig. 5. It consists of only the points in N’s 
subtree, and it is ordered by the y coordinate. This is the 
reason the space complexity of T is O(nlog(n)); every one 
of the O(log(n)) levels contains a duplicate of the original 
n points, where the points are divided among the nodes 
of the level in the associated trees.

The query is computed by traversing T until reaching 
the split node, S, a node where there are points with 
x coordinates between the x coordinates of B in both 
branches of S. Once there, two traversals occur, one 
to the left branch, and one to the right branch. Each 
traversal goes to its respective leaf with the x coordi-
nate of B — or the closest coordinate inside B — while 
collecting points within P on the way there. Fractional 
cascading is also used in the algorithm to ensure that 
the time complexity of the query is O(log(n)+k) rather 
than O(log(n)2+k).

Range Tree Preprocessing

The first step of preprocessing is to make a copy of the 

layer’s points and replace the coordinates with ranks. 
Ranks are the indices of the points when they are dic-
tionary sorted, i.e., the x rank of a point, p, denoted as 
rx(p), is the index of p when the points are dictionary 
sorted by x first and y second, and the y rank, ry(p), is 
the index of p when the points are dictionary sorted by 
y first and x second. The replacement is to remove (x, y) 
and use (rx(p), ry(p)) instead. The reason ranks are used 
instead of the coordinates directly is that ranks ensure 
that each pair of numbers is distinct in both entries.

Then, the rank pairs are dictionary sorted by the y 
ranks, and passed to the root of the tree. This is the 
beginning of the recursive construction process: At each 
node, N, N will be passed at the A(N), which it will keep, 
as well as assigning itself the x rank in the middle of 
A(N). Then, it will make a copy of A(N) to be split into 
two halves based on whether the x rank is higher or 
lower than the N’s x rank. Next, these two halves will 
be passed to the respective child nodes. NL and NR will 
denote the left and right children, respectively. 

After the children are done, the cascading will be added 
to N. In this step, for each of the two child nodes, an 
array will be created with the same size as A(N), denot-
ed by CL(N) and CR(N) for the left and right children, 
respectively. CL(N)[i] will store an index j, where A(N)
[i] ≤ A(NL)[ j], but A(N)[i] > A(NL)[ j-1]. In other words, 
CL(N)[i] will point to the earliest entry in A(NL), which 
is greater than A(N)[i], and similarly for the right side. 
If no such j exists, then it will store the size of A(NL). 
Figure 6 shows the cascading.
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For example, in Fig. 6, A(N)[2] = 19 (using 0-based 
indexing), and the earliest entry in A(NR) that is greater 
than or equal to 19 is 62 at index 1. Therefore, in CR(N)
[2], the value is 1, which is the index of 62 in A(NR). For 
A(N)[6] = 99, there is no entry in A(NL) that is greater 
than or equal to 99, and so it simply contains 4, which 
is the length of A(NL), so that it acts as a sentry.

Without fractional cascading, at each stage of the query, 
a binary search must be done to find the smallest y rank 
in A(N) that is inside B, and all these binary searches 
will add up to an O(log(n)2) time complexity. Instead, 
we can eliminate them almost entirely with fractional 
cascading, having only to do one binary search at the 
S, and then traversing the fractional cascades, as they 
will land on the first such y rank inside B.

Range Tree Query Algorithm

For the query, the first step is to find the B of P via the 
minimum and maximum of the x and y coordinates of 
the vertices of P. Then, B’s x coordinates are translated 
into ranks by binary searching for the minimum and 
maximum ranks of points that lie within B’s x coordi-
nates. Using these two extreme ranks, we traverse T to 
find the S — this is achieved by choosing the child nodes 
that contain both ranks at every level until they are not 
contained in the same child. 

Once S is found, two binary searches are done to find 
the extreme y ranks, similar to the step done earlier for 
x. This is done now and not with x because it is more 
efficient to search the smaller array, A(S), rather than 
the large A of the root. Two traversals are done at this 
part of the algorithm: One to the left branch, and one 
to the right branch, both going down to the leaves to 
reach the extreme x ranks. 

In the sequel, the “outer node” will refer to the node 
in the same direction of the traversal, and the “inner 
node” will refer to the node opposite the direction of 
the traversal, i.e., if traversing the left branch, the left 
children are the outer nodes, and the right children are 
inner nodes, and the opposite holds for the right branch. 
Whenever the inner node is taken, nothing is to be done, 
and the traversal continues. Whenever the outer node 
is taken, all the rank pairs in the inner nodes will have 
x ranks contained in the x bounds of B. 

These pairs will be checked against the query P for con-
tainment using the winding number algorithm. Following 
the cascade, pointers will guarantee that the checking 
starts at the earliest pair with a y rank contained in B, 
and the checking can stop once the y rank lies outside B.

Results
In Fig. 7, we compare the naïve linear approach against 
the range tree approach. The x-axis denotes the number 
of points tested (where it is for a single layer), and the 
y-axis denotes the amount of time taken in microseconds. 
Along the x-axis, the number of points starts from eight, 
and doubles with every iteration. The query is simply a 
10 × 10 square near the center of the layer. The reason 
behind choosing a small region is the time complexity 
(cost) of the range tree query, which is O(log(n)+k). This 
means that having a larger region will result in the k 

dominating the term, and therefore, both algorithms 
will have similar times, and the difference will not be 
noticeable.

As the number of points grow, the amount of time 
taken by the naïve algorithm is proportional to it. This 
is clear as seen in the log-scale graph in Fig. 8, where a 
line almost perfectly fits on the log base 2 of the input 
size and the log base 2 of the algorithm time.

On the other hand, the range tree approach only takes 
a logarithmic amount of time. Given a layer with 134 
million points (227), the query time for the naïve algorithm 
was 12.7 seconds. Therefore, if we were to suppose that 
we needed to do this for 1,000 regions, this would take 
over 3.5 hours. Conversely, the range tree algorithm 
took only 232 microseconds, and 1,000 queries would 
take it 0.23 seconds. Table 1 lists the input size vs. time 
taken in microseconds.

Figure 9 shows a graphical interface, which was im-
plemented to simplify the region’s selection. This allows 
for inspecting, adding/deleting, and editing the regions. 

 
 

Fig. 7  The input size (number of layer points) plotted against the amount of time taken by each algorithm 
in microseconds; naïve in blue, range tree in red. 
 
 
 
 
 

 
 

Fig. 8  The naïve algorithm takes a linear amount of time. 
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Fig. 7  The input size (number of layer points) plotted against the amount of time taken  
            by each algorithm in microseconds; naïve in blue, range tree in red.
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Fig. 8  The naïve algorithm takes a linear amount of time. 
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Fig. 8  The naïve algorithm takes a linear amount of time.
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It also facilitates the translation between what is envi-
sioned by the engineers to the simulation model input 
data and vice versa. 

Conclusions
To address mapping between structured and unstructured 
(2.5D) domains, an efficient workflow was developed to 
automatically transform the modeling of property modifi-
ers for near wellbore modeling and local grid refinement/
coarsening between the structured and unstructured 
domains. Several computational geometry algorithms 
were developed and assessed for efficiency and accuracy. 
The regions are then translated into an unstructured 

format of the targeted reservoir simulator.
It has been shown that range trees are a viable option 

to efficiently select regions in grids, whether structured 
or unstructured, as long as there is a large number of 
such regions that needs to be created and/or converted. 
The difference between the range tree approach and the 
naïve approach in terms of time is huge; the range tree 
approach takes only fractions of a second to accomplish 
what the naïve approach can do in hours. This is in 
agreement with the theory. Its trade-off in the memory 
footprint is justifiable if there is a large number of re-
gions, where the strength and computational efficiency 
is demonstrated.
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A new type of drilling fluid, based on a crosslinker, was developed using polymer chemistry to create a 
superior hole cleaning product that moves drill cuttings, metal, shavings, and other debris out of the 
wellbore. In addition, the new polymer is capable of transporting cuttings when drilling metallic junk or 
partial loss of the formation. The gel is generated by adding a crosslinker (borax) to the drilling fluid, 
and then spotting the second component (polyvinyl alcohol (PVA)) diluted with water at designed per-
centages. The gel is spotted in the wellbore and then washed out. 

The strong carrying capacity of the gel is expected to remove all cuttings and debris from the wellbore. 
The other conventional hole cleaning pills contain large solids and/or are expensive. The other method 
to clean excessive junk from the wellbore is mechanically, by running many hole cleaning trips, which 
consumes a lot of rig time. 

This practice has saved time by reducing the clean out trips. Moreover, the new product, coined “poly-
sweep” can provide a potential solution to hole cleaning when milling metallic junk or drilling at partial 
circulation. Polysweep has been successfully trial tested in a deviated well — with partial losses. During 
the field trial, it was observed that polysweep was effective in carrying all the shaving debris and cuttings 
out from the wellbore throughout the drilling operation with no trouble. Also, polysweep has shown good 
compatibility for use in water-based drilling fluids. 

Polysweep brings value through both its cost-effective, simple formulation, as well as its ability to reduce 
the number of wiper trips. Besides that, it is environmentally friendly as all the components of the fluid 
are nontoxic. The new composition has the potential of producing modified fluids for several different 
applications, including hole cleaning sweeps, loss circulating materials, and fracturing fluids.

A Novel Polymer to Create a New Approach  
of Hole Cleaning
Meshari M. Alshalan, Dr. Abeer M. Al-Olayan, Mohammed M. Al-Rubaii, and Timothy E. Moellendick 

Abstract  /

Introduction
Optimization of hole cleaning during a drilling operation is very important to enhance the drilling rate, however, 
optimum hole cleaning in drilled hole sections remains a major challenge. Hole cleaning must be engineered. 
The penetration rate is highly dependent on hole cleaning. Insufficient hole cleaning can cause numerous issues, 
including stuck pipes, decreased drilling rates, significant drag and torque, lost circulation, wellbore instability, 
erratic trends in equivalent circulating density, more wiper trips, back reaming, bad quality of cement jobs, bit 
balling, and obviously increases in the cumulative cost of drilling operations and the extension of the overall 
operational time1.

If inadequate attention is paid to hole cleaning, such problems can be a root cause of losing the well. To over-
come these problems, drilled cuttings should be efficiently transferred from the hole section by drilling fluid to 
the surface. Hole cleaning is a key element of all successful well design strategies and the issue cannot be over 
emphasized in horizontal or maximum reservoir contact wells in particular2.

Hole cleaning is often the deciding factor between the success and failure during drilling. Historically, most 
stuck pipe incidents can be attributed to poor hole cleaning3. It is very important to identify any wellbore stability 
problems that are affecting the hole cleaning before making changes to the initial planned hole cleaning strategy. 
Hole cleaning is more difficult with oil-based mud (OBM) due to the following reasons: (1) the cuttings will not 
easily disperse into the OBM as with water-based mud (WBM), (2) OBM is more Newtonian than WBM, and (3) 
OBM has lower thixotropic properties than WBM4.

To achieve optimum hole cleaning it is necessary to increase the flow rate to achieve annular velocity to more 
than the slip velocity, while simultaneously optimizing mud rheology to increase the transport ratio. Theoretically, 
if the annular velocity is more than the slip velocity, the mud will lift the drilling cuttings and ultimately the 
drilling cuttings will be transported out of the wellbore. A low annular velocity can cause an unwanted volume 
of cuttings in the annulus. Several drilling case studies have proven that if the cutting’s concentration or cutting’s 
volume in the annulus is more than 5%5, it can lead to a tight hole, stuck pipe, or induced loss circulation events. 

Inadequate hole cleaning can make drilling cuttings accumulate in the annulus of the open hole section, and 
as a result, cause the drilling rate to decrease. Drilling in complicated geological zones, such as faults, joints, 
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fractures, layered formations, weak bedding planes, etc., 
normally cause instability problems for the hole section, 
therefore, a better understanding of the geomechanics of 
the fracturing of the formation will act as an important 
solution to cure the problems of hole sections6. The in-
stability problems of the hole section can be caused by 
the effect of mechanical influences, chemical influences, 
or a combination of them. 

The density of the mud — too high or too low — as 
well as the drilling mud parameters and bad operational 
practices often causes mechanical wellbore damage. This 
damage may include excessive vibration, high torque and 
drag, and not performing wiper trips if the hole section 
dictates7. On the other hand, chemical wellbore damage 
is caused by use of improper drilling fluids or improper 
concentrations of inhibitors added while drilling reactive 
shale formations8. If the hole starts to have sloughing 
or caving problems, the quantity of shale transferred to 
shakers may appear normal, masking the large quantity 
that may accumulate in the annulus. 

Hole cleaning is a common problem encountered while 
drilling. The consequences of inadequate hole cleaning 
vary depending on several factors, such as the rate of 
penetration, the loss severity, and the criticality of the 
drilled zone9. Several materials and methods for opti-
mizing hole cleaning are used globally. Consequently, 
most of them have shown weakness dealing with the 
breadth of the required applications, particularly in de-
viated sections. The main object of any hole cleaning 
optimization product is to enhance the ability of the 
mud system to carry out the cuttings all the way to the 
surface, effectively and economically10. Polysweep is a 
combination of two fluids that will generate a gel phase 
in seconds after mixing. The created gel is strong enough 
to remove the drilling cuttings to the surface, even in 
the most difficult operational environments.

In addition, the same cross-linked synthetic technology 
(polysweep) can also provide a potential solution to mud 
losses in high permeable and fractured loss zones. The 
components used in the formulation react quickly to 
form a gel with flexible and ductile characteristics, and 
therefore can provide an effective solution for stopping 
lost circulation in fractures and high permeable zones. 
Due to flexible, ductile and deformable characteristics, 
it can easily mold into the fractures and high permeable 
zones to produce superior sealing and blocking. 

The reaction to form the gel is very fast and does not 
require special conditions to trigger the reaction. Due 
to very quick reaction time, the components have to be 
placed in the loss zone separately to create the gel in situ. 
One of the components can be added to bentonite mud, 
and the other component can be pumped to introduce 
it into the bentonite mud in the vicinity of the loss zone 
to convert the combined products into a stiff gel. All lab 
tests were conducted successfully prior to the request 
of a field trial.

Laboratory Development and Assessment
Compressive Strength

In this test, the compressive strength of the final polysweep 

material was tested using a stable micro-system, Fig. 
1. The test was conducted with different ratios of the 
crosslinker (borax) and polyvinyl alcohol (PVA) to reach 
to the optimum ratio that makes the polymer rigid, and 
at the same time pourable and flexible to allow it to move 
through the pores. The results show that the strength of 
the polymer was increased with the increase of the borax 
concentration ratio, Figs. 2a, 2b, and 2c.

Sealing and Blocking Efficiency Evaluation

Simulating High Permeable loss zone (CaCO3 
bed). To evaluate the sealing and blocking efficiency 
of the polysweep, we used a low-pressure, low tempera-
ture (LPLT) test apparatus designed by a Saudi Aramco 
scientist and high permeable carbonate bed material to 
simulate a high permeable loss zone, Fig. 3. The LPLT 
cylinder has a diameter of 7.5 cm and a length of 26.5 
cm. The carbonate bed has a measured porosity of 50%.

In this test, the sealing efficiency of the polymer was 
evaluated by simulating a very high permeable bed made 
of 4 mm to 6 mm sized carbonate particles. To measure 
the blocking and sealing efficiency of the polysweep, 
we conducted tests using drilling mud to simulate a loss 
circulation event, and then we mixed one component 
of the polysweep with the drilling fluid, and let it soak 

 

 
Fig. 1  An image showing the stable micro-system model. 
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Fig. 1  An image showing the stable micro-system model.
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Fig. 2  The strength of the polymer was increased with the increase of the borax concentration ratio.
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Fig. 3  The LPLT test apparatus filled with high permeable carbonate bed material. 
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for 10 minutes. After that, the other component of the 
polysweep was added to the mud to measure the sealing 
and blocking efficiency of the polysweep. We applied a 
pressure of 100 psi to simulate the overbalance pressure 
of the borehole at room temperature. 

The polysweep was tested and compared to two com-
mercial products used by Saudi Aramco: Stoploss and 
Soluseal. All tests were conducted three times.

The result shows that both polysweep, Fig. 4a, and 
Soluseal, Fig. 4b, have a high capacity to plug the pores 
and prevent the drilling fluid to pass through. On the 
contrary, stoploss, Fig. 4c, has no ability to plug the 
pores, and all the liquid passed through. 
Simulating Super-K loss zone (Pebble bed). 
To evaluate the sealing and blocking efficiency of the 
polysweep for a supper permeable zone, the pebble bed 
was used to simulate it, Fig. 5a. The result shows that 
polysweep alone could not plug the pores and all the 
fluid passed through, Fig. 5b. The test was run again, 
but this time polysweep was added. The process was 
conducted in two steps: (1) polysweep was added first 
and left to soak for 10 minutes, and (2) then date tree 
roach root fibers was added. This time, the sealing was 
excellent, plugging the pores completely, not allowing 
any fluids to pass through, Fig. 5c. 

Thermal Stability

The polymer was tested for different temperatures and 
pressures to evaluate its stability under well conditions. 
Figure 6a shows the test sample conducted at 80 °F with 
no pressure. Figure 6b shows the test sample conducted 
at 150 °F and 500 psi, using static pressure. Figure 6c 
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Fig. 3  The LPLT test apparatus filled with high permeable  
            carbonate bed material.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4  The LPLT test conducted using carbonate bed material for (a) polysweep, (b) Soluseal, and (c) 
stoploss. 
 

 (a)  (b)  (c) 

Fig. 4  The LPLT test conducted using carbonate bed material for (a) polysweep, (b) Soluseal, and (c) stoploss. 
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shows the test sample conducted at 150 °F and 500 psi, 
after hot rolling. 

These tests were to observe the attitude of the polymer 
when increasing the temperature and pressure. The re-
sults showed that the polymer is formed direct and the 
solidification is increased with temperature and pressure. 
Importantly, the polymer does not show any degradation 
at these conditions.

Field Trial Test
The developer completed trial tests for polysweep ob-
serving the results, and conducted comprehensive lab 
tests that showed promising results in regard to hole 
cleaning efficiency. The polysweep is produced when 
two fluids, one containing PVA and one containing bo-
rax, react together. The generated mixture is a strong 

polymer gel that can remove the cuttings and seal any 
loss circulation zones. 

The field trial was conducted recently. The well en-
countered partial losses during drilling the 16” hole 
section at 1,594 ft. The rig laid down the drilling as-
sembly and ran open-ended drillpipe to the top of the 
loss zone. The rig spotted 140 bbl of the polysweep (15 
bbl of hi-vis spacer, 90 bbl of polysweep, 15 bbl hi-vis 
spacer, and 20 bbl caustic pill) across the loss zone. Static 
losses dropped to zero. The rig laid down open-ended 
drillpipe, ran the drilling assembly to the bottom, and 
resumed drilling with 100% circulation, and all the 
cuttings that were in the hole were transported to the 
surface successfully.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5  The LPLT test using pebble bed for (a) polysweep, (b) polysweep system, and (c) polysweep plus 
date tree roach root fibers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6  Images of the polymer after testing to evaluate its stability under well conditions: (a) at 80 °F with 
no pressure, (b) at 150 °F and 500 psi, using static pressure, and (c) at 150 °F and 500 psi, after hot 
rolling. 
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Fig. 5  The LPLT test using pebble bed for (a) polysweep, (b) polysweep system, and (c) polysweep plus date tree roach root fibers.

Fig. 6  Images of the polymer after testing to evaluate its stability under well conditions: (a) at 80 °F with no pressure, (b) at 150 °F and 500 psi, using static  
           pressure, and (c) at 150 °F and 500 psi, after hot rolling.
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Conclusions
The developed crosslinker (polysweep) is a superior hole 
cleaning product that transports drill cuttings, metal 
shavings, and other debris out of the wellbore. 

• Two fluids when mixed downhole generate gel that 
has a high carrying capacity.

• The polymer is compatible for use in water-based 
drilling fluids.

• The gel lifts and carries metal shaving debris during 
milling operations and provides a reliable solution 
in partial circulation conditions.

• The polymer helps minimize the number of wiper 
trips.

• The gel is nontoxic and chemically inert.
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Relative permeability (kr) is a concept introduced into Darcy’s flow equation to account for multiphase flow. 
kr is measured through steady-state or unsteady-state laboratory experiments, each with its peculiar advan-
tages and disadvantages. This article discusses the basis for a new, faster, more reliable, and cost-effective 
methodology for acquiring relative permeability ratio (krr) data while drilling, and presents the modifications 
required to current flow equations to replace the use of  kr with the use of  krr.

After drilling through a reservoir section, relevant logs like resistivity and porosity are acquired and 
interpreted for water saturation (sw). Zones of constant average sw are then tested using conventional drill 
stem test equipment, and the relative amounts of oil and water in the extracted liquid are determined at 
the surface using standard water cut determination procedures. Using equations derived and discussed 
in this article, these flow data are converted to a plot of krr as a function of average water saturation krr(sw) 
and saturation dependent total phase mobility Mt(sw). For the purpose of this article, an open source 
experimental kr data and corresponding rock and fluid properties were used to simulate drill stem test 
fluid flow rates; the krr and Mt were then computed from these flow data at various averages of sw.

Conventional steady-state and unsteady-state kr experiments are carried out on restored cores having 
limited dimensions and whose initial sw, wettability, and fluid viscosity ratio may need to be restored to 
representative in situ conditions using industry standard approaches. The new methodology presented 
acquires krr data at larger scale and at in situ conditions of initial sw, wettability, and fluid viscosity ratio, 
thereby eliminating the need for core restoration. 

A steady-state kr experiment on a single core takes about 10 weeks, whereas krr acquisition on an entire 
pay interval can be carried out within hours. A steady-state kr measurement does not permit the estima-
tion of critical sw, while the unsteady-state kr experiment does not provide kr data for all saturations less 
than the breakthrough saturation. The new methodology is designed to allow the estimation of critical 
sw and residual oil saturation. These parameters are important inputs during numerical simulation tasks 
of history matching and field development predictions.

Systems and Procedure for Obtaining Relative 
Permeability Ratio from Data Acquired during 
Drilling Operation
Babatope O. Kayode and Dr. Bander N. Al-Ghamdi

Abstract  /

Introduction
Relative permeability (kr) is the ratio of effective permeability of a phase to a reference such as its permeability 
when it fully saturates the porous medium. Experimental data over the years have noted multifaceted complexity 
associated with the direct laboratory measurement of kr. Work by Leverett (1939)1 and Leverette and Lewis (1941)2 
leads to the conclusion that kr to a phase is only a function of the saturation of that phase. Later work by other 
researchers, e.g., Odeh (1959)3 and Aboujafar (2014)4, have shown that the kr of the non-wetting phase is not only a 
function of saturation, but also a function of the fluid viscosity ratio when the sample’s single-phase permeability is 
greater than 1 Darcy. Odeh (1959)3 claims that theoretical explanations by Yuster (1951)5 supports his conclusions, 
although several authors like Baker (1960)6 have criticized Odeh’s findings.

It has been shown that to obtain reliable kr measurements in the laboratory, attention must be given to address 
problems such as capillary end effects, hysteresis, and scaling effects7-9. It has also been shown that in some situa-
tions of strong oil-water preferential wettability, useful kr measurement data can be obtained at room temperature 
using dead or refined oil, however, such tests may provide misleading results for mixed wettability rocks10, 11. In 
addition, it has been shown that when transporting the core from the reservoir to the surface condition, this process 
removes the confining stresses and potentially results in changes in the core’s pore structure.

For laboratory data to be useful in scaling up to the field level, measurements should be taken at conditions 
representative of those found in the reservoir. This entails aging10 the core to restore the wettability state and 
performing the test with the appropriate combination of viscous, capillary, and gravity forces representative of 
reservoir conditions8, 10, as well as restituting the reservoir’s confined pressure and stress conditions.
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Steady-State kr Measurement

Oil and water are injected simultaneously into the core at 
a constant rate or constant pressure for a period required 
to reach equilibrium. Pressure gradient, flow rates, and 
saturations are measured — and with the aid of Darcy’s 
law — used to obtain an effective permeability for each 
phase. The key advantage of this method is the ability 
to determine the kr for a wider range of saturation levels; 
therefore, it is the method of choice by many. Its key 
demerit is its inherent time requirement and necessity 
for an independent measurement of fluid saturation in 
the core.

Unsteady-State kr Measurement

This is the fastest approach for obtaining kr in the labo-
ratory. It consists of displacing fluid by a constant rate 
or the constant pressure injection of a driving fluid and 
measuring the flow rate of the displaced fluids at the 
core’s exit face. The data is then analyzed using the 
Buckley-Leverette equation for linear displacement of 
immiscible and incompressible fluids by often neglecting 
capillary end effects. 

The limitations of the unsteady-state approach is the 
occurrence of viscous fingering and channeling in het-
erogeneous cores, and the fact that no kr data is measured 
prior to injected fluid breakthrough. In addition, the 
operational requirement for the use of viscous oil (as a 
means of reducing viscous fingering of injected water) 
and high injection rates masks the role of capillarity and 
wettability. The centrifuge technique is an unsteady-state 
measurement believed to overcome the viscous fingering 
problem of unsteady-state measurement and provides 
the most reliable estimate of residual non-wetting phase 
saturation than other techniques by better simulating 
the gravity drainage process7, 12.

It is because of these limitations, difficulties, and un-
certainties associated with the laboratory measurement 
of kr, coupled with the fact that the most reliable tests are 
time-consuming — especially when it involves aging a 
core to its presumed original wettability (it can sometimes 
require about 5 weeks) — that several researchers13-15 have 
been motivated to explore the possibility of obtaining 
kr data in situ.

Some of these approaches are based on inverse solu-
tions14, 15 in which kr is derived from history matching of 
field data, while Al-Rushaid et al. (2017)13 has currently 
provided an approach to independently determine the 
kr using downhole measured data. 

Described next are some of the steps proposed13 and 
the inherent limitations of assumptions.
1. Absolute permeability is calculated from pressure 

transient analysis (PTA) done at free water level. 
Conduct another PTA at the oil zone and divide the 
interpreted effective oil permeability by the absolute 
permeability obtained in the free water level. This 
step already assumes that the reservoir rock is homo-
geneous, and therefore, the differences in effective 
permeability thickness (kh) between the oil zone and 
free water level is due only to differences in the fluid 
viscosity of oil and water, respectively. 

This is a rarely adequate assumption. Moreover, in 
low permeability, reservoirs where the free water level 
may be significantly deeper than the dry-oil zone (large 
transition zone); drilling further down to free water level 
to conduct a baseline PTA measurement may represent 
a significant additional cost.
2. The kr endpoints were determined from log interpre-

tation. The minimum water saturation (sw) on logs is 
used as the krw endpoint, while the lowest oil saturation 
is interpreted as the sor. The limitation of this approach 
is that in reservoir rocks with sections containing sig-
nificant bound water, if the lowest sw in the reservoir 
interval is interpreted as the krw endpoint, this would 
lead to significant water production from the bound 
water region, whereas in reality, the bound water is 
immobile.

3. A PTA is conducted within the transition zone and 
interpreted for effective oil and water permeability 
using the relative flow rates of each phase. These ef-
fective oil and water permeabilities are then converted 
to kr by normalizing with the absolute permeability 
obtained from the PTA conducted below the free water 
level. The limitations here are as explained earlier; 
the absolute permeability in the transition zone is not 
necessarily similar to that below the free water level. 
Therefore, the differences in effective permeability 
may not be only due to fluid viscosity differences.

In this current work, we propose an alternative mul-
tiphase flow parameter that can be determined from 
downhole data independent of history matching and 
propose modifications to multiphase flow equations that 
would permit the use of the proposed alternative multi-
phase flow parameter.

Mathematical Basis for New Methodology
The original Darcy’s flow equation, Eqn. 1, was derived 
for flow of single-phase incompressible liquid; particularly 
the equation was derived for use in the field of hydrology 
to study the flow of water in the water table.

 
𝑞𝑞 = 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

𝜇𝜇𝜇𝜇𝑘𝑘𝜇𝜇                      (1) 
 
𝑞𝑞 = 𝑘𝑘𝜅𝜅𝑟𝑟𝑘𝑘𝑘𝑘𝑘𝑘

𝜇𝜇𝜇𝜇𝑘𝑘𝜇𝜇                    (2) 
 
𝑞𝑞 = 𝑘𝑘ℎ𝜅𝜅𝑟𝑟𝑘𝑘𝑘𝑘

141.2𝜇𝜇𝜇𝜇(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
                     (3) 

 
𝑞𝑞𝑜𝑜 =

𝑘𝑘ℎ𝜅𝜅𝑟𝑟𝑜𝑜𝑘𝑘𝑘𝑘
141.2𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜(𝑙𝑙𝑙𝑙

𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
                    (4) 

 
𝑞𝑞𝑤𝑤 = 𝑘𝑘ℎ𝜅𝜅𝑟𝑟𝑤𝑤𝑘𝑘𝑘𝑘

141.2𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤(𝑙𝑙𝑙𝑙
𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
                   (5) 

 
𝑞𝑞𝑤𝑤
𝑞𝑞𝑜𝑜
= 𝜅𝜅𝑟𝑟𝑤𝑤/𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤

𝜅𝜅𝑟𝑟𝑜𝑜/𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜
                    (6) 

 
𝜅𝜅𝑟𝑟𝑟𝑟 =

𝜅𝜅𝑟𝑟𝑤𝑤
𝜅𝜅𝑟𝑟𝑜𝑜

= 𝑞𝑞𝑤𝑤𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤
𝑞𝑞𝑜𝑜𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

                    (7) 
 
 
𝑞𝑞𝑡𝑡 = 𝑞𝑞𝑜𝑜 + 𝑞𝑞𝑤𝑤 = 𝑘𝑘ℎ𝑘𝑘𝑘𝑘

141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
[ 𝜅𝜅𝑟𝑟𝑜𝑜𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

+ 𝜅𝜅𝑟𝑟𝑤𝑤
𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤

]                      (8) 

 
𝑞𝑞𝑡𝑡 =

𝑘𝑘ℎ𝑘𝑘𝑘𝑘
141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒

𝑟𝑟𝑤𝑤
−0.75)

𝑀𝑀𝑡𝑡                        (9) 

 
𝑀𝑀𝑡𝑡 = [ 𝜅𝜅𝑟𝑟𝑜𝑜𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

+ 𝜅𝜅𝑟𝑟𝑤𝑤
𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤

]                       (10) 
 

𝑀𝑀𝑡𝑡(𝑠𝑠𝑤𝑤) =
141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒

𝑟𝑟𝑤𝑤
−0.75)𝑅𝑅

𝑘𝑘ℎ                      (11) 
 
𝑞𝑞𝑡𝑡 = 𝑞𝑞𝑜𝑜 + 𝑞𝑞𝑤𝑤 = 𝑘𝑘ℎ𝑘𝑘𝑘𝑘

141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
𝑀𝑀𝑡𝑡                 (12) 

 
𝑞𝑞𝑤𝑤
𝑞𝑞𝑜𝑜
= 𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤
𝜅𝜅𝑟𝑟𝑟𝑟                        (13) 

 
𝑞𝑞𝑜𝑜 =

𝑘𝑘ℎ𝑘𝑘𝑘𝑘
141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒

𝑟𝑟𝑤𝑤
−0.75)

∗ 𝑀𝑀𝑡𝑡(𝑠𝑠𝑤𝑤)

(1+𝜇𝜇𝑜𝑜𝛽𝛽𝑜𝑜𝜅𝜅𝑟𝑟𝑟𝑟𝜇𝜇𝑤𝑤𝛽𝛽𝑤𝑤
)
                      (14) 

 
𝑞𝑞𝑤𝑤 = 𝑞𝑞𝑜𝑜𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤
𝜅𝜅𝑟𝑟𝑟𝑟                        (15) 

 
 

 1

In oil reservoir studies, single-phase flow is an idealistic 
assumption; this is because the drainage process through 
which oil accumulates in originally water-bearing sands 
does not completely eliminate the connate water. This 
connate water flows alongside the oil — in the transition 
zone — during production. In addition, most reservoirs 
either experience aquifer support or some sort of fluid 
injection (gas, water, surfactants) for pressure support 
or improvement of sweep. 

Therefore, a correction term is needed to be incorpo-
rated into Eqn. 1 to account for the reduction in the flow 
of the main phase in the presence of other phases within 
the rock pore system. This correction term is referred to 
as kr. Equation 1 can therefore be re-written as:
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In general, the equation for radial flow under semi-
steady-state conditions is given by:
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The kr is measured in the laboratory using the steady-
state approach or unsteady-state approach. Once the kro 
and krw data have been determined as a function of sw, the 
flow of each phase can be independently calculated as:

 
𝑞𝑞 = 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

𝜇𝜇𝜇𝜇𝑘𝑘𝜇𝜇                      (1) 
 
𝑞𝑞 = 𝑘𝑘𝜅𝜅𝑟𝑟𝑘𝑘𝑘𝑘𝑘𝑘

𝜇𝜇𝜇𝜇𝑘𝑘𝜇𝜇                    (2) 
 
𝑞𝑞 = 𝑘𝑘ℎ𝜅𝜅𝑟𝑟𝑘𝑘𝑘𝑘

141.2𝜇𝜇𝜇𝜇(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
                     (3) 

 
𝑞𝑞𝑜𝑜 =

𝑘𝑘ℎ𝜅𝜅𝑟𝑟𝑜𝑜𝑘𝑘𝑘𝑘
141.2𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜(𝑙𝑙𝑙𝑙

𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
                    (4) 

 
𝑞𝑞𝑤𝑤 = 𝑘𝑘ℎ𝜅𝜅𝑟𝑟𝑤𝑤𝑘𝑘𝑘𝑘

141.2𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤(𝑙𝑙𝑙𝑙
𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
                   (5) 

 
𝑞𝑞𝑤𝑤
𝑞𝑞𝑜𝑜
= 𝜅𝜅𝑟𝑟𝑤𝑤/𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤

𝜅𝜅𝑟𝑟𝑜𝑜/𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜
                    (6) 

 
𝜅𝜅𝑟𝑟𝑟𝑟 =

𝜅𝜅𝑟𝑟𝑤𝑤
𝜅𝜅𝑟𝑟𝑜𝑜

= 𝑞𝑞𝑤𝑤𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤
𝑞𝑞𝑜𝑜𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

                    (7) 
 
 
𝑞𝑞𝑡𝑡 = 𝑞𝑞𝑜𝑜 + 𝑞𝑞𝑤𝑤 = 𝑘𝑘ℎ𝑘𝑘𝑘𝑘

141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
[ 𝜅𝜅𝑟𝑟𝑜𝑜𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

+ 𝜅𝜅𝑟𝑟𝑤𝑤
𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤

]                      (8) 

 
𝑞𝑞𝑡𝑡 =

𝑘𝑘ℎ𝑘𝑘𝑘𝑘
141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒

𝑟𝑟𝑤𝑤
−0.75)

𝑀𝑀𝑡𝑡                        (9) 

 
𝑀𝑀𝑡𝑡 = [ 𝜅𝜅𝑟𝑟𝑜𝑜𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

+ 𝜅𝜅𝑟𝑟𝑤𝑤
𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤

]                       (10) 
 

𝑀𝑀𝑡𝑡(𝑠𝑠𝑤𝑤) =
141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒

𝑟𝑟𝑤𝑤
−0.75)𝑅𝑅

𝑘𝑘ℎ                      (11) 
 
𝑞𝑞𝑡𝑡 = 𝑞𝑞𝑜𝑜 + 𝑞𝑞𝑤𝑤 = 𝑘𝑘ℎ𝑘𝑘𝑘𝑘

141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
𝑀𝑀𝑡𝑡                 (12) 

 
𝑞𝑞𝑤𝑤
𝑞𝑞𝑜𝑜
= 𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤
𝜅𝜅𝑟𝑟𝑟𝑟                        (13) 

 
𝑞𝑞𝑜𝑜 =

𝑘𝑘ℎ𝑘𝑘𝑘𝑘
141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒

𝑟𝑟𝑤𝑤
−0.75)

∗ 𝑀𝑀𝑡𝑡(𝑠𝑠𝑤𝑤)

(1+𝜇𝜇𝑜𝑜𝛽𝛽𝑜𝑜𝜅𝜅𝑟𝑟𝑟𝑟𝜇𝜇𝑤𝑤𝛽𝛽𝑤𝑤
)
                      (14) 

 
𝑞𝑞𝑤𝑤 = 𝑞𝑞𝑜𝑜𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤
𝜅𝜅𝑟𝑟𝑟𝑟                        (15) 
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𝑞𝑞 = 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

𝜇𝜇𝜇𝜇𝑘𝑘𝜇𝜇                      (1) 
 
𝑞𝑞 = 𝑘𝑘𝜅𝜅𝑟𝑟𝑘𝑘𝑘𝑘𝑘𝑘

𝜇𝜇𝜇𝜇𝑘𝑘𝜇𝜇                    (2) 
 
𝑞𝑞 = 𝑘𝑘ℎ𝜅𝜅𝑟𝑟𝑘𝑘𝑘𝑘

141.2𝜇𝜇𝜇𝜇(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
                     (3) 

 
𝑞𝑞𝑜𝑜 =

𝑘𝑘ℎ𝜅𝜅𝑟𝑟𝑜𝑜𝑘𝑘𝑘𝑘
141.2𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜(𝑙𝑙𝑙𝑙

𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
                    (4) 

 
𝑞𝑞𝑤𝑤 = 𝑘𝑘ℎ𝜅𝜅𝑟𝑟𝑤𝑤𝑘𝑘𝑘𝑘

141.2𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤(𝑙𝑙𝑙𝑙
𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
                   (5) 

 
𝑞𝑞𝑤𝑤
𝑞𝑞𝑜𝑜
= 𝜅𝜅𝑟𝑟𝑤𝑤/𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤

𝜅𝜅𝑟𝑟𝑜𝑜/𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜
                    (6) 

 
𝜅𝜅𝑟𝑟𝑟𝑟 =

𝜅𝜅𝑟𝑟𝑤𝑤
𝜅𝜅𝑟𝑟𝑜𝑜

= 𝑞𝑞𝑤𝑤𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤
𝑞𝑞𝑜𝑜𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

                    (7) 
 
 
𝑞𝑞𝑡𝑡 = 𝑞𝑞𝑜𝑜 + 𝑞𝑞𝑤𝑤 = 𝑘𝑘ℎ𝑘𝑘𝑘𝑘

141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
[ 𝜅𝜅𝑟𝑟𝑜𝑜𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

+ 𝜅𝜅𝑟𝑟𝑤𝑤
𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤

]                      (8) 

 
𝑞𝑞𝑡𝑡 =

𝑘𝑘ℎ𝑘𝑘𝑘𝑘
141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒

𝑟𝑟𝑤𝑤
−0.75)

𝑀𝑀𝑡𝑡                        (9) 

 
𝑀𝑀𝑡𝑡 = [ 𝜅𝜅𝑟𝑟𝑜𝑜𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

+ 𝜅𝜅𝑟𝑟𝑤𝑤
𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤

]                       (10) 
 

𝑀𝑀𝑡𝑡(𝑠𝑠𝑤𝑤) =
141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒

𝑟𝑟𝑤𝑤
−0.75)𝑅𝑅

𝑘𝑘ℎ                      (11) 
 
𝑞𝑞𝑡𝑡 = 𝑞𝑞𝑜𝑜 + 𝑞𝑞𝑤𝑤 = 𝑘𝑘ℎ𝑘𝑘𝑘𝑘

141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
𝑀𝑀𝑡𝑡                 (12) 

 
𝑞𝑞𝑤𝑤
𝑞𝑞𝑜𝑜
= 𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤
𝜅𝜅𝑟𝑟𝑟𝑟                        (13) 

 
𝑞𝑞𝑜𝑜 =

𝑘𝑘ℎ𝑘𝑘𝑘𝑘
141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒

𝑟𝑟𝑤𝑤
−0.75)

∗ 𝑀𝑀𝑡𝑡(𝑠𝑠𝑤𝑤)

(1+𝜇𝜇𝑜𝑜𝛽𝛽𝑜𝑜𝜅𝜅𝑟𝑟𝑟𝑟𝜇𝜇𝑤𝑤𝛽𝛽𝑤𝑤
)
                      (14) 

 
𝑞𝑞𝑤𝑤 = 𝑞𝑞𝑜𝑜𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤
𝜅𝜅𝑟𝑟𝑟𝑟                        (15) 
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An expression can be derived for the produced water-oil 
ratio at in situ conditions by dividing Eqn. 5 with Eqn. 
4 as follows:

 
𝑞𝑞 = 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

𝜇𝜇𝜇𝜇𝑘𝑘𝜇𝜇                      (1) 
 
𝑞𝑞 = 𝑘𝑘𝜅𝜅𝑟𝑟𝑘𝑘𝑘𝑘𝑘𝑘

𝜇𝜇𝜇𝜇𝑘𝑘𝜇𝜇                    (2) 
 
𝑞𝑞 = 𝑘𝑘ℎ𝜅𝜅𝑟𝑟𝑘𝑘𝑘𝑘

141.2𝜇𝜇𝜇𝜇(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
                     (3) 

 
𝑞𝑞𝑜𝑜 =

𝑘𝑘ℎ𝜅𝜅𝑟𝑟𝑜𝑜𝑘𝑘𝑘𝑘
141.2𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜(𝑙𝑙𝑙𝑙

𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
                    (4) 

 
𝑞𝑞𝑤𝑤 = 𝑘𝑘ℎ𝜅𝜅𝑟𝑟𝑤𝑤𝑘𝑘𝑘𝑘

141.2𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤(𝑙𝑙𝑙𝑙
𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
                   (5) 

 
𝑞𝑞𝑤𝑤
𝑞𝑞𝑜𝑜
= 𝜅𝜅𝑟𝑟𝑤𝑤/𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤

𝜅𝜅𝑟𝑟𝑜𝑜/𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜
                    (6) 

 
𝜅𝜅𝑟𝑟𝑟𝑟 =

𝜅𝜅𝑟𝑟𝑤𝑤
𝜅𝜅𝑟𝑟𝑜𝑜

= 𝑞𝑞𝑤𝑤𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤
𝑞𝑞𝑜𝑜𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

                    (7) 
 
 
𝑞𝑞𝑡𝑡 = 𝑞𝑞𝑜𝑜 + 𝑞𝑞𝑤𝑤 = 𝑘𝑘ℎ𝑘𝑘𝑘𝑘

141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
[ 𝜅𝜅𝑟𝑟𝑜𝑜𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

+ 𝜅𝜅𝑟𝑟𝑤𝑤
𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤

]                      (8) 

 
𝑞𝑞𝑡𝑡 =

𝑘𝑘ℎ𝑘𝑘𝑘𝑘
141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒

𝑟𝑟𝑤𝑤
−0.75)

𝑀𝑀𝑡𝑡                        (9) 

 
𝑀𝑀𝑡𝑡 = [ 𝜅𝜅𝑟𝑟𝑜𝑜𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

+ 𝜅𝜅𝑟𝑟𝑤𝑤
𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤

]                       (10) 
 

𝑀𝑀𝑡𝑡(𝑠𝑠𝑤𝑤) =
141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒

𝑟𝑟𝑤𝑤
−0.75)𝑅𝑅

𝑘𝑘ℎ                      (11) 
 
𝑞𝑞𝑡𝑡 = 𝑞𝑞𝑜𝑜 + 𝑞𝑞𝑤𝑤 = 𝑘𝑘ℎ𝑘𝑘𝑘𝑘

141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
𝑀𝑀𝑡𝑡                 (12) 

 
𝑞𝑞𝑤𝑤
𝑞𝑞𝑜𝑜
= 𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤
𝜅𝜅𝑟𝑟𝑟𝑟                        (13) 

 
𝑞𝑞𝑜𝑜 =

𝑘𝑘ℎ𝑘𝑘𝑘𝑘
141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒

𝑟𝑟𝑤𝑤
−0.75)

∗ 𝑀𝑀𝑡𝑡(𝑠𝑠𝑤𝑤)

(1+𝜇𝜇𝑜𝑜𝛽𝛽𝑜𝑜𝜅𝜅𝑟𝑟𝑟𝑟𝜇𝜇𝑤𝑤𝛽𝛽𝑤𝑤
)
                      (14) 

 
𝑞𝑞𝑤𝑤 = 𝑞𝑞𝑜𝑜𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤
𝜅𝜅𝑟𝑟𝑟𝑟                        (15) 
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An expression for krr can be obtained from Eqn. 6 as 
follows:

 
𝑞𝑞 = 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

𝜇𝜇𝜇𝜇𝑘𝑘𝜇𝜇                      (1) 
 
𝑞𝑞 = 𝑘𝑘𝜅𝜅𝑟𝑟𝑘𝑘𝑘𝑘𝑘𝑘

𝜇𝜇𝜇𝜇𝑘𝑘𝜇𝜇                    (2) 
 
𝑞𝑞 = 𝑘𝑘ℎ𝜅𝜅𝑟𝑟𝑘𝑘𝑘𝑘

141.2𝜇𝜇𝜇𝜇(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
                     (3) 

 
𝑞𝑞𝑜𝑜 =

𝑘𝑘ℎ𝜅𝜅𝑟𝑟𝑜𝑜𝑘𝑘𝑘𝑘
141.2𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜(𝑙𝑙𝑙𝑙

𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
                    (4) 

 
𝑞𝑞𝑤𝑤 = 𝑘𝑘ℎ𝜅𝜅𝑟𝑟𝑤𝑤𝑘𝑘𝑘𝑘

141.2𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤(𝑙𝑙𝑙𝑙
𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
                   (5) 

 
𝑞𝑞𝑤𝑤
𝑞𝑞𝑜𝑜
= 𝜅𝜅𝑟𝑟𝑤𝑤/𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤

𝜅𝜅𝑟𝑟𝑜𝑜/𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜
                    (6) 

 
𝜅𝜅𝑟𝑟𝑟𝑟 =

𝜅𝜅𝑟𝑟𝑤𝑤
𝜅𝜅𝑟𝑟𝑜𝑜

= 𝑞𝑞𝑤𝑤𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤
𝑞𝑞𝑜𝑜𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

                    (7) 
 
 
𝑞𝑞𝑡𝑡 = 𝑞𝑞𝑜𝑜 + 𝑞𝑞𝑤𝑤 = 𝑘𝑘ℎ𝑘𝑘𝑘𝑘

141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
[ 𝜅𝜅𝑟𝑟𝑜𝑜𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

+ 𝜅𝜅𝑟𝑟𝑤𝑤
𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤

]                      (8) 

 
𝑞𝑞𝑡𝑡 =

𝑘𝑘ℎ𝑘𝑘𝑘𝑘
141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒

𝑟𝑟𝑤𝑤
−0.75)

𝑀𝑀𝑡𝑡                        (9) 

 
𝑀𝑀𝑡𝑡 = [ 𝜅𝜅𝑟𝑟𝑜𝑜𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

+ 𝜅𝜅𝑟𝑟𝑤𝑤
𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤

]                       (10) 
 

𝑀𝑀𝑡𝑡(𝑠𝑠𝑤𝑤) =
141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒

𝑟𝑟𝑤𝑤
−0.75)𝑅𝑅

𝑘𝑘ℎ                      (11) 
 
𝑞𝑞𝑡𝑡 = 𝑞𝑞𝑜𝑜 + 𝑞𝑞𝑤𝑤 = 𝑘𝑘ℎ𝑘𝑘𝑘𝑘

141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
𝑀𝑀𝑡𝑡                 (12) 

 
𝑞𝑞𝑤𝑤
𝑞𝑞𝑜𝑜
= 𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤
𝜅𝜅𝑟𝑟𝑟𝑟                        (13) 

 
𝑞𝑞𝑜𝑜 =

𝑘𝑘ℎ𝑘𝑘𝑘𝑘
141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒

𝑟𝑟𝑤𝑤
−0.75)

∗ 𝑀𝑀𝑡𝑡(𝑠𝑠𝑤𝑤)

(1+𝜇𝜇𝑜𝑜𝛽𝛽𝑜𝑜𝜅𝜅𝑟𝑟𝑟𝑟𝜇𝜇𝑤𝑤𝛽𝛽𝑤𝑤
)
                      (14) 

 
𝑞𝑞𝑤𝑤 = 𝑞𝑞𝑜𝑜𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤
𝜅𝜅𝑟𝑟𝑟𝑟                        (15) 
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In addition, an expression for the total liquid rate can 
be obtained by adding Eqn. 4 and Eqn. 5 as:

 
𝑞𝑞 = 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

𝜇𝜇𝜇𝜇𝑘𝑘𝜇𝜇                      (1) 
 
𝑞𝑞 = 𝑘𝑘𝜅𝜅𝑟𝑟𝑘𝑘𝑘𝑘𝑘𝑘

𝜇𝜇𝜇𝜇𝑘𝑘𝜇𝜇                    (2) 
 
𝑞𝑞 = 𝑘𝑘ℎ𝜅𝜅𝑟𝑟𝑘𝑘𝑘𝑘

141.2𝜇𝜇𝜇𝜇(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
                     (3) 

 
𝑞𝑞𝑜𝑜 =

𝑘𝑘ℎ𝜅𝜅𝑟𝑟𝑜𝑜𝑘𝑘𝑘𝑘
141.2𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜(𝑙𝑙𝑙𝑙

𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
                    (4) 

 
𝑞𝑞𝑤𝑤 = 𝑘𝑘ℎ𝜅𝜅𝑟𝑟𝑤𝑤𝑘𝑘𝑘𝑘

141.2𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤(𝑙𝑙𝑙𝑙
𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
                   (5) 

 
𝑞𝑞𝑤𝑤
𝑞𝑞𝑜𝑜
= 𝜅𝜅𝑟𝑟𝑤𝑤/𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤

𝜅𝜅𝑟𝑟𝑜𝑜/𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜
                    (6) 

 
𝜅𝜅𝑟𝑟𝑟𝑟 =

𝜅𝜅𝑟𝑟𝑤𝑤
𝜅𝜅𝑟𝑟𝑜𝑜

= 𝑞𝑞𝑤𝑤𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤
𝑞𝑞𝑜𝑜𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

                    (7) 
 
 
𝑞𝑞𝑡𝑡 = 𝑞𝑞𝑜𝑜 + 𝑞𝑞𝑤𝑤 = 𝑘𝑘ℎ𝑘𝑘𝑘𝑘

141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
[ 𝜅𝜅𝑟𝑟𝑜𝑜𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

+ 𝜅𝜅𝑟𝑟𝑤𝑤
𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤

]                      (8) 

 
𝑞𝑞𝑡𝑡 =

𝑘𝑘ℎ𝑘𝑘𝑘𝑘
141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒

𝑟𝑟𝑤𝑤
−0.75)

𝑀𝑀𝑡𝑡                        (9) 

 
𝑀𝑀𝑡𝑡 = [ 𝜅𝜅𝑟𝑟𝑜𝑜𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

+ 𝜅𝜅𝑟𝑟𝑤𝑤
𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤

]                       (10) 
 

𝑀𝑀𝑡𝑡(𝑠𝑠𝑤𝑤) =
141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒

𝑟𝑟𝑤𝑤
−0.75)𝑅𝑅

𝑘𝑘ℎ                      (11) 
 
𝑞𝑞𝑡𝑡 = 𝑞𝑞𝑜𝑜 + 𝑞𝑞𝑤𝑤 = 𝑘𝑘ℎ𝑘𝑘𝑘𝑘

141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
𝑀𝑀𝑡𝑡                 (12) 

 
𝑞𝑞𝑤𝑤
𝑞𝑞𝑜𝑜
= 𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤
𝜅𝜅𝑟𝑟𝑟𝑟                        (13) 

 
𝑞𝑞𝑜𝑜 =

𝑘𝑘ℎ𝑘𝑘𝑘𝑘
141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒

𝑟𝑟𝑤𝑤
−0.75)

∗ 𝑀𝑀𝑡𝑡(𝑠𝑠𝑤𝑤)

(1+𝜇𝜇𝑜𝑜𝛽𝛽𝑜𝑜𝜅𝜅𝑟𝑟𝑟𝑟𝜇𝜇𝑤𝑤𝛽𝛽𝑤𝑤
)
                      (14) 

 
𝑞𝑞𝑤𝑤 = 𝑞𝑞𝑜𝑜𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤
𝜅𝜅𝑟𝑟𝑟𝑟                        (15) 
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We can re-write Eqn. 8 as:

 
𝑞𝑞 = 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

𝜇𝜇𝜇𝜇𝑘𝑘𝜇𝜇                      (1) 
 
𝑞𝑞 = 𝑘𝑘𝜅𝜅𝑟𝑟𝑘𝑘𝑘𝑘𝑘𝑘

𝜇𝜇𝜇𝜇𝑘𝑘𝜇𝜇                    (2) 
 
𝑞𝑞 = 𝑘𝑘ℎ𝜅𝜅𝑟𝑟𝑘𝑘𝑘𝑘

141.2𝜇𝜇𝜇𝜇(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
                     (3) 

 
𝑞𝑞𝑜𝑜 =

𝑘𝑘ℎ𝜅𝜅𝑟𝑟𝑜𝑜𝑘𝑘𝑘𝑘
141.2𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜(𝑙𝑙𝑙𝑙

𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
                    (4) 

 
𝑞𝑞𝑤𝑤 = 𝑘𝑘ℎ𝜅𝜅𝑟𝑟𝑤𝑤𝑘𝑘𝑘𝑘

141.2𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤(𝑙𝑙𝑙𝑙
𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
                   (5) 

 
𝑞𝑞𝑤𝑤
𝑞𝑞𝑜𝑜
= 𝜅𝜅𝑟𝑟𝑤𝑤/𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤

𝜅𝜅𝑟𝑟𝑜𝑜/𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜
                    (6) 

 
𝜅𝜅𝑟𝑟𝑟𝑟 =

𝜅𝜅𝑟𝑟𝑤𝑤
𝜅𝜅𝑟𝑟𝑜𝑜

= 𝑞𝑞𝑤𝑤𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤
𝑞𝑞𝑜𝑜𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

                    (7) 
 
 
𝑞𝑞𝑡𝑡 = 𝑞𝑞𝑜𝑜 + 𝑞𝑞𝑤𝑤 = 𝑘𝑘ℎ𝑘𝑘𝑘𝑘

141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
[ 𝜅𝜅𝑟𝑟𝑜𝑜𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

+ 𝜅𝜅𝑟𝑟𝑤𝑤
𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤

]                      (8) 

 
𝑞𝑞𝑡𝑡 =

𝑘𝑘ℎ𝑘𝑘𝑘𝑘
141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒

𝑟𝑟𝑤𝑤
−0.75)

𝑀𝑀𝑡𝑡                        (9) 

 
𝑀𝑀𝑡𝑡 = [ 𝜅𝜅𝑟𝑟𝑜𝑜𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

+ 𝜅𝜅𝑟𝑟𝑤𝑤
𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤

]                       (10) 
 

𝑀𝑀𝑡𝑡(𝑠𝑠𝑤𝑤) =
141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒

𝑟𝑟𝑤𝑤
−0.75)𝑅𝑅

𝑘𝑘ℎ                      (11) 
 
𝑞𝑞𝑡𝑡 = 𝑞𝑞𝑜𝑜 + 𝑞𝑞𝑤𝑤 = 𝑘𝑘ℎ𝑘𝑘𝑘𝑘

141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
𝑀𝑀𝑡𝑡                 (12) 

 
𝑞𝑞𝑤𝑤
𝑞𝑞𝑜𝑜
= 𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤
𝜅𝜅𝑟𝑟𝑟𝑟                        (13) 

 
𝑞𝑞𝑜𝑜 =

𝑘𝑘ℎ𝑘𝑘𝑘𝑘
141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒

𝑟𝑟𝑤𝑤
−0.75)

∗ 𝑀𝑀𝑡𝑡(𝑠𝑠𝑤𝑤)

(1+𝜇𝜇𝑜𝑜𝛽𝛽𝑜𝑜𝜅𝜅𝑟𝑟𝑟𝑟𝜇𝜇𝑤𝑤𝛽𝛽𝑤𝑤
)
                      (14) 

 
𝑞𝑞𝑤𝑤 = 𝑞𝑞𝑜𝑜𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤
𝜅𝜅𝑟𝑟𝑟𝑟                        (15) 
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where 

 
𝑞𝑞 = 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

𝜇𝜇𝜇𝜇𝑘𝑘𝜇𝜇                      (1) 
 
𝑞𝑞 = 𝑘𝑘𝜅𝜅𝑟𝑟𝑘𝑘𝑘𝑘𝑘𝑘

𝜇𝜇𝜇𝜇𝑘𝑘𝜇𝜇                    (2) 
 
𝑞𝑞 = 𝑘𝑘ℎ𝜅𝜅𝑟𝑟𝑘𝑘𝑘𝑘

141.2𝜇𝜇𝜇𝜇(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
                     (3) 

 
𝑞𝑞𝑜𝑜 =

𝑘𝑘ℎ𝜅𝜅𝑟𝑟𝑜𝑜𝑘𝑘𝑘𝑘
141.2𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜(𝑙𝑙𝑙𝑙

𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
                    (4) 

 
𝑞𝑞𝑤𝑤 = 𝑘𝑘ℎ𝜅𝜅𝑟𝑟𝑤𝑤𝑘𝑘𝑘𝑘

141.2𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤(𝑙𝑙𝑙𝑙
𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
                   (5) 

 
𝑞𝑞𝑤𝑤
𝑞𝑞𝑜𝑜
= 𝜅𝜅𝑟𝑟𝑤𝑤/𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤

𝜅𝜅𝑟𝑟𝑜𝑜/𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜
                    (6) 

 
𝜅𝜅𝑟𝑟𝑟𝑟 =

𝜅𝜅𝑟𝑟𝑤𝑤
𝜅𝜅𝑟𝑟𝑜𝑜

= 𝑞𝑞𝑤𝑤𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤
𝑞𝑞𝑜𝑜𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

                    (7) 
 
 
𝑞𝑞𝑡𝑡 = 𝑞𝑞𝑜𝑜 + 𝑞𝑞𝑤𝑤 = 𝑘𝑘ℎ𝑘𝑘𝑘𝑘

141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
[ 𝜅𝜅𝑟𝑟𝑜𝑜𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

+ 𝜅𝜅𝑟𝑟𝑤𝑤
𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤

]                      (8) 

 
𝑞𝑞𝑡𝑡 =

𝑘𝑘ℎ𝑘𝑘𝑘𝑘
141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒

𝑟𝑟𝑤𝑤
−0.75)

𝑀𝑀𝑡𝑡                        (9) 

 
𝑀𝑀𝑡𝑡 = [ 𝜅𝜅𝑟𝑟𝑜𝑜𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

+ 𝜅𝜅𝑟𝑟𝑤𝑤
𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤

]                       (10) 
 

𝑀𝑀𝑡𝑡(𝑠𝑠𝑤𝑤) =
141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒

𝑟𝑟𝑤𝑤
−0.75)𝑅𝑅

𝑘𝑘ℎ                      (11) 
 
𝑞𝑞𝑡𝑡 = 𝑞𝑞𝑜𝑜 + 𝑞𝑞𝑤𝑤 = 𝑘𝑘ℎ𝑘𝑘𝑘𝑘

141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
𝑀𝑀𝑡𝑡                 (12) 

 
𝑞𝑞𝑤𝑤
𝑞𝑞𝑜𝑜
= 𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤
𝜅𝜅𝑟𝑟𝑟𝑟                        (13) 

 
𝑞𝑞𝑜𝑜 =

𝑘𝑘ℎ𝑘𝑘𝑘𝑘
141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒

𝑟𝑟𝑤𝑤
−0.75)

∗ 𝑀𝑀𝑡𝑡(𝑠𝑠𝑤𝑤)

(1+𝜇𝜇𝑜𝑜𝛽𝛽𝑜𝑜𝜅𝜅𝑟𝑟𝑟𝑟𝜇𝜇𝑤𝑤𝛽𝛽𝑤𝑤
)
                      (14) 

 
𝑞𝑞𝑤𝑤 = 𝑞𝑞𝑜𝑜𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤
𝜅𝜅𝑟𝑟𝑟𝑟                        (15) 
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Note that over a moderate range of pressures, total 
phase mobility (Mt) can be sufficiently assumed as a 
sole function of sw when reservoir fluids are of low 
compressibility and viscosity. These assumptions are 
adequate for the flow of oil above bubble point 
pressure.

If a flow test is performed on a known interval length 
of a reservoir at several ∆P, Eqn. 9 suggests that a plot 
of qt vs. ∆P will yield a slope R from which Mt can be 
determined as:

 
𝑞𝑞 = 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

𝜇𝜇𝜇𝜇𝑘𝑘𝜇𝜇                      (1) 
 
𝑞𝑞 = 𝑘𝑘𝜅𝜅𝑟𝑟𝑘𝑘𝑘𝑘𝑘𝑘

𝜇𝜇𝜇𝜇𝑘𝑘𝜇𝜇                    (2) 
 
𝑞𝑞 = 𝑘𝑘ℎ𝜅𝜅𝑟𝑟𝑘𝑘𝑘𝑘

141.2𝜇𝜇𝜇𝜇(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
                     (3) 

 
𝑞𝑞𝑜𝑜 =

𝑘𝑘ℎ𝜅𝜅𝑟𝑟𝑜𝑜𝑘𝑘𝑘𝑘
141.2𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜(𝑙𝑙𝑙𝑙

𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
                    (4) 

 
𝑞𝑞𝑤𝑤 = 𝑘𝑘ℎ𝜅𝜅𝑟𝑟𝑤𝑤𝑘𝑘𝑘𝑘

141.2𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤(𝑙𝑙𝑙𝑙
𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
                   (5) 

 
𝑞𝑞𝑤𝑤
𝑞𝑞𝑜𝑜
= 𝜅𝜅𝑟𝑟𝑤𝑤/𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤

𝜅𝜅𝑟𝑟𝑜𝑜/𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜
                    (6) 

 
𝜅𝜅𝑟𝑟𝑟𝑟 =

𝜅𝜅𝑟𝑟𝑤𝑤
𝜅𝜅𝑟𝑟𝑜𝑜

= 𝑞𝑞𝑤𝑤𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤
𝑞𝑞𝑜𝑜𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

                    (7) 
 
 
𝑞𝑞𝑡𝑡 = 𝑞𝑞𝑜𝑜 + 𝑞𝑞𝑤𝑤 = 𝑘𝑘ℎ𝑘𝑘𝑘𝑘

141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
[ 𝜅𝜅𝑟𝑟𝑜𝑜𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

+ 𝜅𝜅𝑟𝑟𝑤𝑤
𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤

]                      (8) 

 
𝑞𝑞𝑡𝑡 =

𝑘𝑘ℎ𝑘𝑘𝑘𝑘
141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒

𝑟𝑟𝑤𝑤
−0.75)

𝑀𝑀𝑡𝑡                        (9) 

 
𝑀𝑀𝑡𝑡 = [ 𝜅𝜅𝑟𝑟𝑜𝑜𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

+ 𝜅𝜅𝑟𝑟𝑤𝑤
𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤

]                       (10) 
 

𝑀𝑀𝑡𝑡(𝑠𝑠𝑤𝑤) =
141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒

𝑟𝑟𝑤𝑤
−0.75)𝑅𝑅

𝑘𝑘ℎ                      (11) 
 
𝑞𝑞𝑡𝑡 = 𝑞𝑞𝑜𝑜 + 𝑞𝑞𝑤𝑤 = 𝑘𝑘ℎ𝑘𝑘𝑘𝑘

141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
𝑀𝑀𝑡𝑡                 (12) 

 
𝑞𝑞𝑤𝑤
𝑞𝑞𝑜𝑜
= 𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤
𝜅𝜅𝑟𝑟𝑟𝑟                        (13) 

 
𝑞𝑞𝑜𝑜 =

𝑘𝑘ℎ𝑘𝑘𝑘𝑘
141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒

𝑟𝑟𝑤𝑤
−0.75)

∗ 𝑀𝑀𝑡𝑡(𝑠𝑠𝑤𝑤)

(1+𝜇𝜇𝑜𝑜𝛽𝛽𝑜𝑜𝜅𝜅𝑟𝑟𝑟𝑟𝜇𝜇𝑤𝑤𝛽𝛽𝑤𝑤
)
                      (14) 

 
𝑞𝑞𝑤𝑤 = 𝑞𝑞𝑜𝑜𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤
𝜅𝜅𝑟𝑟𝑟𝑟                        (15) 
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Where h is the flow interval and k is the average interval 
permeability, and re is the test’s investigation radius. The 
product kh and re can be obtained from interpretation 
of the pressure transient data recorded during the mini 
drill stem test, Fig. 1.

From the principles of well testing16, the sequence of 
pressure transient behavior during partial penetration 
is: (1) early radial flow representing only the contribution 
from the perforated interval, kh, (2) spherical flow from 
which kv/k can be estimated, and (3) when the diffusion 
has reached the upper and lower boundaries, the flow 
regime becomes radial again, but this time corresponding 
to kht. Figure 2 shows the early radial flow kh.

From the foregoing, the phase flow rates at any sat-
uration can be computed by rearranging Eqn. 9 and 

Eqn. 6 as follows:

 
𝑞𝑞 = 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

𝜇𝜇𝜇𝜇𝑘𝑘𝜇𝜇                      (1) 
 
𝑞𝑞 = 𝑘𝑘𝜅𝜅𝑟𝑟𝑘𝑘𝑘𝑘𝑘𝑘

𝜇𝜇𝜇𝜇𝑘𝑘𝜇𝜇                    (2) 
 
𝑞𝑞 = 𝑘𝑘ℎ𝜅𝜅𝑟𝑟𝑘𝑘𝑘𝑘

141.2𝜇𝜇𝜇𝜇(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
                     (3) 

 
𝑞𝑞𝑜𝑜 =

𝑘𝑘ℎ𝜅𝜅𝑟𝑟𝑜𝑜𝑘𝑘𝑘𝑘
141.2𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜(𝑙𝑙𝑙𝑙

𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
                    (4) 

 
𝑞𝑞𝑤𝑤 = 𝑘𝑘ℎ𝜅𝜅𝑟𝑟𝑤𝑤𝑘𝑘𝑘𝑘

141.2𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤(𝑙𝑙𝑙𝑙
𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
                   (5) 

 
𝑞𝑞𝑤𝑤
𝑞𝑞𝑜𝑜
= 𝜅𝜅𝑟𝑟𝑤𝑤/𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤

𝜅𝜅𝑟𝑟𝑜𝑜/𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜
                    (6) 

 
𝜅𝜅𝑟𝑟𝑟𝑟 =

𝜅𝜅𝑟𝑟𝑤𝑤
𝜅𝜅𝑟𝑟𝑜𝑜

= 𝑞𝑞𝑤𝑤𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤
𝑞𝑞𝑜𝑜𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

                    (7) 
 
 
𝑞𝑞𝑡𝑡 = 𝑞𝑞𝑜𝑜 + 𝑞𝑞𝑤𝑤 = 𝑘𝑘ℎ𝑘𝑘𝑘𝑘

141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
[ 𝜅𝜅𝑟𝑟𝑜𝑜𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

+ 𝜅𝜅𝑟𝑟𝑤𝑤
𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤

]                      (8) 

 
𝑞𝑞𝑡𝑡 =

𝑘𝑘ℎ𝑘𝑘𝑘𝑘
141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒

𝑟𝑟𝑤𝑤
−0.75)

𝑀𝑀𝑡𝑡                        (9) 

 
𝑀𝑀𝑡𝑡 = [ 𝜅𝜅𝑟𝑟𝑜𝑜𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

+ 𝜅𝜅𝑟𝑟𝑤𝑤
𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤

]                       (10) 
 

𝑀𝑀𝑡𝑡(𝑠𝑠𝑤𝑤) =
141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒

𝑟𝑟𝑤𝑤
−0.75)𝑅𝑅

𝑘𝑘ℎ                      (11) 
 
𝑞𝑞𝑡𝑡 = 𝑞𝑞𝑜𝑜 + 𝑞𝑞𝑤𝑤 = 𝑘𝑘ℎ𝑘𝑘𝑘𝑘

141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
𝑀𝑀𝑡𝑡                 (12) 

 
𝑞𝑞𝑤𝑤
𝑞𝑞𝑜𝑜
= 𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤
𝜅𝜅𝑟𝑟𝑟𝑟                        (13) 

 
𝑞𝑞𝑜𝑜 =

𝑘𝑘ℎ𝑘𝑘𝑘𝑘
141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒

𝑟𝑟𝑤𝑤
−0.75)

∗ 𝑀𝑀𝑡𝑡(𝑠𝑠𝑤𝑤)

(1+𝜇𝜇𝑜𝑜𝛽𝛽𝑜𝑜𝜅𝜅𝑟𝑟𝑟𝑟𝜇𝜇𝑤𝑤𝛽𝛽𝑤𝑤
)
                      (14) 

 
𝑞𝑞𝑤𝑤 = 𝑞𝑞𝑜𝑜𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤
𝜅𝜅𝑟𝑟𝑟𝑟                        (15) 
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𝑞𝑞 = 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

𝜇𝜇𝜇𝜇𝑘𝑘𝜇𝜇                      (1) 
 
𝑞𝑞 = 𝑘𝑘𝜅𝜅𝑟𝑟𝑘𝑘𝑘𝑘𝑘𝑘

𝜇𝜇𝜇𝜇𝑘𝑘𝜇𝜇                    (2) 
 
𝑞𝑞 = 𝑘𝑘ℎ𝜅𝜅𝑟𝑟𝑘𝑘𝑘𝑘

141.2𝜇𝜇𝜇𝜇(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
                     (3) 

 
𝑞𝑞𝑜𝑜 =

𝑘𝑘ℎ𝜅𝜅𝑟𝑟𝑜𝑜𝑘𝑘𝑘𝑘
141.2𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜(𝑙𝑙𝑙𝑙

𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
                    (4) 

 
𝑞𝑞𝑤𝑤 = 𝑘𝑘ℎ𝜅𝜅𝑟𝑟𝑤𝑤𝑘𝑘𝑘𝑘

141.2𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤(𝑙𝑙𝑙𝑙
𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
                   (5) 

 
𝑞𝑞𝑤𝑤
𝑞𝑞𝑜𝑜
= 𝜅𝜅𝑟𝑟𝑤𝑤/𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤

𝜅𝜅𝑟𝑟𝑜𝑜/𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜
                    (6) 

 
𝜅𝜅𝑟𝑟𝑟𝑟 =

𝜅𝜅𝑟𝑟𝑤𝑤
𝜅𝜅𝑟𝑟𝑜𝑜

= 𝑞𝑞𝑤𝑤𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤
𝑞𝑞𝑜𝑜𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

                    (7) 
 
 
𝑞𝑞𝑡𝑡 = 𝑞𝑞𝑜𝑜 + 𝑞𝑞𝑤𝑤 = 𝑘𝑘ℎ𝑘𝑘𝑘𝑘

141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
[ 𝜅𝜅𝑟𝑟𝑜𝑜𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

+ 𝜅𝜅𝑟𝑟𝑤𝑤
𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤

]                      (8) 

 
𝑞𝑞𝑡𝑡 =

𝑘𝑘ℎ𝑘𝑘𝑘𝑘
141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒

𝑟𝑟𝑤𝑤
−0.75)

𝑀𝑀𝑡𝑡                        (9) 

 
𝑀𝑀𝑡𝑡 = [ 𝜅𝜅𝑟𝑟𝑜𝑜𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

+ 𝜅𝜅𝑟𝑟𝑤𝑤
𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤

]                       (10) 
 

𝑀𝑀𝑡𝑡(𝑠𝑠𝑤𝑤) =
141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒

𝑟𝑟𝑤𝑤
−0.75)𝑅𝑅

𝑘𝑘ℎ                      (11) 
 
𝑞𝑞𝑡𝑡 = 𝑞𝑞𝑜𝑜 + 𝑞𝑞𝑤𝑤 = 𝑘𝑘ℎ𝑘𝑘𝑘𝑘

141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
𝑀𝑀𝑡𝑡                 (12) 

 
𝑞𝑞𝑤𝑤
𝑞𝑞𝑜𝑜
= 𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤
𝜅𝜅𝑟𝑟𝑟𝑟                        (13) 

 
𝑞𝑞𝑜𝑜 =

𝑘𝑘ℎ𝑘𝑘𝑘𝑘
141.2(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒

𝑟𝑟𝑤𝑤
−0.75)

∗ 𝑀𝑀𝑡𝑡(𝑠𝑠𝑤𝑤)

(1+𝜇𝜇𝑜𝑜𝛽𝛽𝑜𝑜𝜅𝜅𝑟𝑟𝑟𝑟𝜇𝜇𝑤𝑤𝛽𝛽𝑤𝑤
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Equations 12 and 13 can be solved simultaneously for 
each phase flow rate to obtain:

 
𝑞𝑞 = 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

𝜇𝜇𝜇𝜇𝑘𝑘𝜇𝜇                      (1) 
 
𝑞𝑞 = 𝑘𝑘𝜅𝜅𝑟𝑟𝑘𝑘𝑘𝑘𝑘𝑘

𝜇𝜇𝜇𝜇𝑘𝑘𝜇𝜇                    (2) 
 
𝑞𝑞 = 𝑘𝑘ℎ𝜅𝜅𝑟𝑟𝑘𝑘𝑘𝑘

141.2𝜇𝜇𝜇𝜇(𝑙𝑙𝑙𝑙𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
                     (3) 

 
𝑞𝑞𝑜𝑜 =

𝑘𝑘ℎ𝜅𝜅𝑟𝑟𝑜𝑜𝑘𝑘𝑘𝑘
141.2𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜(𝑙𝑙𝑙𝑙

𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
                    (4) 

 
𝑞𝑞𝑤𝑤 = 𝑘𝑘ℎ𝜅𝜅𝑟𝑟𝑤𝑤𝑘𝑘𝑘𝑘

141.2𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤(𝑙𝑙𝑙𝑙
𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

−0.75)
                   (5) 

 
𝑞𝑞𝑤𝑤
𝑞𝑞𝑜𝑜
= 𝜅𝜅𝑟𝑟𝑤𝑤/𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤

𝜅𝜅𝑟𝑟𝑜𝑜/𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜
                    (6) 

 
𝜅𝜅𝑟𝑟𝑟𝑟 =

𝜅𝜅𝑟𝑟𝑤𝑤
𝜅𝜅𝑟𝑟𝑜𝑜

= 𝑞𝑞𝑤𝑤𝜇𝜇𝑤𝑤𝜇𝜇𝑤𝑤
𝑞𝑞𝑜𝑜𝜇𝜇𝑜𝑜𝜇𝜇𝑜𝑜

                    (7) 
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Procedure for Field Application
After a well has been logged, various sections with differ-
ent sw are identified, Fig. 3, and tested as described here. 

• Impose a drawdown of 100 psi over a 1 ft interval 
and record the stabilized oil and water flow rate, then 

Fig. 1  A schematic of the flow regimes during a mini drill stem test. 
 

 
 
Fig. 1  A schematic of the flow regimes during a mini drill stem test. 
 
 
 

 
 
Fig. 2  The sample Log-Log diagnostic plot showing stage-1 stabilization (permeability*perforation 
thickness). 
 
 
 

Fig. 2  The sample Log-Log diagnostic plot showing stage-1 stabilization  
           (permeability*perforation thickness).
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Fig. 3  Example of Sw log.

Sw Krw Kro

0.2 0 0.8

0.25 0.002 0.61

0.3 0.009 0.47

0.35 0.02 0.37

0.4 0.033 0.285

0.45 0.051 0.22

0.5 0.075 0.163

0.55 0.1 0.12

0.6 0.132 0.081

0.65 0.17 0.05

0.7 0.208 0.027

0.75 0.251 0.01

0.8 0.3 0

Table 1  Open source relative permeability data.

Sw Krw Kro dP psi Qw bbl Qo bbl Krr

0.2 0 0.8 500 0 0.757654 0

0.25 0.002 0.61 500 0.024624 0.577711 0.003279

0.3 0.009 0.47 500 0.110807 0.445122 0.019149

0.35 0.02 0.37 500 0.246238 0.350415 0.054054

0.4 0.033 0.285 500 0.406292 0.269914 0.115789

0.45 0.051 0.22 500 0.627906 0.208355 0.231818

0.5 0.075 0.163 500 0.923391 0.154372 0.460123

0.55 0.1 0.12 500 1.231188 0.113648 0.833333

0.6 0.132 0.081 500 1.625169 0.076713 1.62963

0.65 0.17 0.05 500 2.09302 0.047353 3.4

0.7 0.208 0.027 500 2.560872 0.025571 7.703704

0.75 0.251 0.01 500 3.090283 0.009471 25.1

0.8 0.3 0 500 3.693565 0 —

Table 2  Calculation of krr from fluid phases’ rate and rock and fluid properties.
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increase the drawdown to 200 psi, 300 psi, and 500 
psi, up to a maximum ∆P such that the Pwf = Pb, and 
measure the stabilized liquid flow rates in all cases.

• For each drawdown flow period, use Eqn. 7 to deter-
mine krr. This value should be approximately identical 
for all drawdown pressure values assuming that the 
fluids have low compressibility and low viscosity. This 
assumption is adequate for the flow of oil above Pb.

• From the recorded multirate pressure transients, kh 
and re can be estimated using principles of PTA, and 
then using Eqn. 11, the Mt is computed.

• Repeat these steps for various log saturation intervals 
and come up with a curve for krr vs. sw and Mt vs. sw.

• A plot of the interval kh vs. the interval average poros-
ity (from density, sonic, or neutron log) from multiple 
wells is used for reservoir flow-type definition.

• Finally, Eqns. 14 and 15 can then be used to predict 
the phase flow rates at any saturation, and for any 
drawdown pressure.

• Any sw interval where the maximum ∆P (Pi-Pb) pro-
duces single-phase oil is the operational critical water 
saturation, Swcr* for the rock type and any sw where 
the maximum ∆P produces single-phase water is 
the operational residual oil saturation, Sor*, for the 
rock type.

The Sor* determined from this new methodology is more 
operationally reliable than the Sor determined from lab-
oratory experiments. This is because the Sor* is based on 
the maximum expected displacement pressure rather 
than the arbitrarily large displacement pressures used in 
determining the Sor in the laboratory. The Sor* provides 
a more reliable estimate of mobile oil recoverable by 
primary and secondary recovery mechanisms.

Also, the swcr* determined from this methodology reflects 
the presence of bound water. If a log section shows sw 
that is higher than the lowest sw in the reservoir interval, 
and if the application of maximum ∆P still does not 
result in water production, it simply implies such water 
represents bound water.

The kr data shown in Table 1 is representative of the 
flow from a given reservoir Res-xyz. 

Using Eqns. 4 and 5, individual phase flow rates were 
computed and the total flow rate calculated from the 
sum. A pressure drawdown of 500 psi was assumed, 
permeability of 10 md, flow interval of 1 ft, oil viscosity 
of 5 cP, water viscosity of 0.5 cP, oil formation volume 
factor of 1.3, and a water formation volume factor of 1.0.

Table 2 summarizes the computed flow rates, which 
are used to represent actual measured flow rate. Also 
shown is the calculated krr.

Figure 4 shows the plot of the krr vs. the sw. 
At each saturation, multirate flow tests are conducted 

and the results are shown in Table 3.
Figure 5 shows the plot of the total fluid rate vs. the 

drawdown pressure at each sw.
The Mt is then determined from the slope of each data 

series using Eqn. 11.
Figure 6 shows the plot of Mt vs. sw.
Finally, using Eqns. 14 and 15 together with the Mt 

and krr from the relevant plots, we can predict the phase 
flow rates. Table 4 shows that the predicted flow rates 
using the parameters krr and Mt derived in this article 

Sw Krw Kro dP psi Qw bbl Qo bbl Krr 
0.2 0 0.8 500 0 0.757654 0 
0.25 0.002 0.61 500 0.024624 0.577711 0.003279 
0.3 0.009 0.47 500 0.110807 0.445122 0.019149 
0.35 0.02 0.37 500 0.246238 0.350415 0.054054 
0.4 0.033 0.285 500 0.406292 0.269914 0.115789 
0.45 0.051 0.22 500 0.627906 0.208355 0.231818 
0.5 0.075 0.163 500 0.923391 0.154372 0.460123 
0.55 0.1 0.12 500 1.231188 0.113648 0.833333 
0.6 0.132 0.081 500 1.625169 0.076713 1.62963 
0.65 0.17 0.05 500 2.09302 0.047353 3.4 
0.7 0.208 0.027 500 2.560872 0.025571 7.703704 
0.75 0.251 0.01 500 3.090283 0.009471 25.1 
0.8 0.3 0 500 3.693565 0 — 

 
Table 2  Calculation of krr from fluid phases’ rate and rock and fluid properties. 
 
 

 
 
Fig. 4  The calculated krr vs. sw. 
 
 

Sw 
= 
0.2 

 Sw 
= 

0.3 

 Sw 
= 

0.4 

 Sw 
= 

0.5 

 Sw 
= 

0.6 

 Sw 
= 

0.7 

 Sw 
= 

0.8 

 

∆P qt ∆P qt ∆P qt ∆P qt ∆P qt ∆P qt ∆P qt 
10
0 

0.15153
1 

10
0 

0.11118
6 

10
0 

0.13524
1 

10
0 

0.21555
3 

10
0 

0.34037
6 

10
0 

0.51728
9 

10
0 

0.73871
3 

20
0 

0.30306
2 

20
0 

0.22237
2 

20
0 

0.27048
3 

20
0 

0.43110
5 

20
0 

0.68075
2 

20
0 

1.03457
7 

20
0 

1.47742
6 

30
0 

0.45459
3 

30
0 

0.33355
7 

30
0 

0.40572
4 

30
0 

0.64665
8 

30
0 

1.02112
9 

30
0 

1.55186
6 

30
0 

2.21613
9 

40
0 

0.60612
4 

40
0 

0.44474
3 

40
0 

0.54096
5 

40
0 

0.86221
1 

40
0 

1.36150
5 

40
0 

2.06915
4 

40
0 

2.95485
2 

50
0 

0.75765
4 

50
0 

0.55592
9 

50
0 

0.67620
7 

50
0 

1.07776
3 

50
0 

1.70188
1 

50
0 

2.58644
3 

50
0 

3.69356
5 

 
Table 3  The fluid flow rate at various drawdown pressure for different average water saturations. 

	

Fig. 4  The calculated krr vs. sw.

Sw = 
0.2

Sw = 
0.3

Sw = 
0.4

Sw = 
0.5

Sw = 
0.6

Sw = 
0.7

Sw = 
0.8

∆P qt ∆P qt ∆P qt ∆P qt ∆P qt ∆P qt ∆P qt

100 0.151531 100 0.111186 100 0.135241 100 0.215553 100 0.340376 100 0.517289 100 0.738713

200 0.303062 200 0.222372 200 0.270483 200 0.431105 200 0.680752 200 1.034577 200 1.477426

300 0.454593 300 0.333557 300 0.405724 300 0.646658 300 1.021129 300 1.551866 300 2.216139

400 0.606124 400 0.444743 400 0.540965 400 0.862211 400 1.361505 400 2.069154 400 2.954852

500 0.757654 500 0.555929 500 0.676207 500 1.077763 500 1.701881 500 2.586443 500 3.693565

Table 3  The fluid flow rate at various drawdown pressure for different average water saturations.
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are very close to the actual data.
Figure 7 plots the correlation between the calculated 

rate and the measured rate, along with showing that 
the equations developed are able to effectively predict 
the measured rates.

Conclusions
In this article, we have developed equations and pro-
cedures for obtaining the krr from information obtained 
during drilling. The approach is faster than convention-
al steady-state and unsteady-state kr experiments. It is 
more representative of in situ conditions of wettability 
and the viscosity ratio and provides data based on av-
eraging larger rock volumes. Subsequently, due to the 
inherent assumptions, this approach cannot be used to 
obtain the gas-oil krr since the viscosity of gas is highly 
pressure dependent.
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Nomenclature
qo, qw, qt = Flow rate (oil, water, total)
µo, µw = Viscosity (oil, water)
βo, βw = Formation volume factor (oil, water)
kro, krw = Relative permeability (oil, water)
rw = Wellbore radius
re = Reservoir radius
R = slope of qt vs. ∆P plot

 
 

 
 
Fig. 5  The total liquid rate vs. the drawdown pressure at different water saturations. 
 
 

 
 
Fig. 6  The plot of Mt vs. sw. 
 
 
Sw Krr Mt qo qw qt Measured 
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Fig. 7  The comparison plot of the calculated rate vs. the measured rate. 
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