












































































































































































































































number of total epochs or model’s iterations.

Figure 13 shows the correlation coeflicients obtained
for the training, validation, and testing data set, ex-
ceeding 0.97. This model was generated using a total
of six hidden layers. There is no single rule of thumb
to determine the number of hidden layers or neurons
required to fit a data set. Determining the number of
hidden layers and neurons in a neural network is a heu-
ristic process. In this study, an iterative algorithm was

Table 7 The final hyperparameters used to construct the

ANN model.
Hyperparameter Value
Number of epochs 3,164

Optimization algorithm Gradient Descent

Learning rate 0.001
Loss MSE
Activation function Sigmoid
Neurons in hidden Layer 1 90
Neurons in hidden Layer 2 95
Neurons in hidden Layer 3 110
Neurons in hidden Layer 4 150
Neurons in hidden Layer 5 110
Neurons in hidden Layer 6 115

Table 8 The input features for some of the selected test cases.

Spring 2021

developed to automatically fit several initial network
structures to the data set by assigning a random num-
ber of neurons and layers to each structure. Then, the
performance of these structures are compared against
cach other to estimate the best possible combination
of total hidden layers and neurons that would yield the
least MSE for all testing cases, as previously mentioned.

Table 7 shows a summary of the hyper parameters
used to generate the model. Table 8 shows the input
features for some of the selected test cases, and Figs.
14 to 17 show the production profiles generated by the
ANN model matching the results of the simulation
model for these cases. As can be seen from these plots,
the addition of polymer gels improves the production
profiles by arresting early water breakthrough and
sustaining a higher plateau oil rate during the first 20
to 40 months of production. For all 50 test cases, the
mean average error were 2.46%, 10.31%, and 8.01% for
the recovery factor, oil rate, and water cut, respectively.

Figures 18 to 20 shows the MSE distribution per test
case for each target variable. The maximum error
observed was less than 25% for all cases.

Conclusions

This work presents a unique surrogate modeling ap-
proach based on machine learning to describe complex
polymer gel kinetics and flow dynamics in deep con-
formance applications. The presented neural network
model was used to robustly predict the production and
oil recovery performance of polymer gel treatments
in fractured reservoirs outperforming commercial
simulators in terms of computational complexity and
processing speed. The following conclusions are derived
from this study:
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Input Feature

Case 53
Reservoir Thickness (h) 18.19
Matrix Porosity (@, ) 50.79
Fracture Porosity () 0.38
Matrix Permeability (k) 0.01
Fracture Permeability (k,) 283.03
Fracture Spacing (d,) 2,481.36
Initial Water Saturation (S,) 2,241.36
Injection Rate (q,) 3,040.62
Producer Flowing Pressure (p,) 0.27
Drainage Area (A) 52.74
Polymer Concentration (PLMR) 3,956.79
Cross-linker Concentration (XLKR) 233.74

Testing Cases

Case 227 Case 589
15.27 20.02
41.77 88.91
0.52 0.18
0.01 0.01
117.44 160.46

2,440.62 2,084.87

2,200.34 4,262.43

3,625.07 3,553.94
0.26 0.14

277.35 177.53

2,528.83 2,756.47

145.15 293.17

Case 801
18.58
94.80
0.43
0.00
75.50

1,668.80
1,753.73

3,456.19
0.22
214.71

4,266.55

421.14
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Fig. 14 The comparison of the polymer gel production profiles
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Fig. 16

generated by the ANN model matching the results of the
simulation model for these cases (Test Case-53).

The comparison of the polymer gel production profiles
generated by the ANN model matching the results of the
simulation model for these cases (Test Case-589).
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Fig. 15 The comparison of the polymer gel production profiles Fig. 17 The comparison of the polymer gel production profiles
generated by the ANN model matching the results of the generated by the ANN model matching the results of the
simulation model for these cases (Test Case-227). simulation model for these cases (Test Case-801).
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* The ANN models can be used to fit multiple output
regression problems as shown in this study. For
a given 29 input features and functional links of
reservoir and well parameters, the model was able
to accurately predict 204 outputs representing the
oil rates, water cuts, and recovery factor production
profiles over a 10-year period for polymer gel con-
formance treatments in the fractured reservoirs.
Therefore, the ANN model was able to generate
a time series forecasting of multiple target vari-
ables offering an advantage over classic machine
learning algorithms commonly limited to a single
target variable.

Hyperparameter tuning indicates that using a sig-
moid activation function and updating the model’s
weights using a MSE loss and a gradient descent
algorithm are the best combination to train the

neural network with total iterations of 3,142.

» Optimization results also indicate that generating a
deep network with six hidden layers yields the best
prediction results for this problem. The mean aver-
age error for all testing cases were 2.46%), 10.31%,
and 8.01% for the recovery factor, oil rate, and
water cut’s target variables, respectively.



Fig. 18 The MSE distribution per test case for the recovery
factor.
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Fig. 19 The MSE distribution per test case for the water cut.
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Fig. 20 The MSE distribution per test case for the oil rate.
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