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Multiphase flow metering is an important tool for production monitoring and optimization. Although 
there are many technologies available on the market, the existing multiphase meters are only accurate to 
a certain extent and generally are expensive to purchase and maintain. 

Use of virtual flow meters are a low-cost alternative to conventional production monitoring tools, which 
relies on mathematical modeling rather than the use of hardware instrumentation. Supported by the 
availability of the data from different sensors and production history, the development of different virtu-
al flow metering systems has become a focal point for many companies. 

This article discusses the importance of flow modeling for virtual flow metering. In addition, main 
data-driven algorithms are introduced for the analysis of several dynamic production data sets. Artificial 
neural networks (ANN), together with advanced machine learning methods, such as the gated recurrent 
unit (GRU) and extreme gradient boosting (XGBoost), have been considered as possible candidates for 
virtual flow metering. The obtained results indicate that the machine learning algorithms estimate oil, 
gas, and water rates with acceptable accuracy. The feasibility of the data-driven virtual flow metering 
approach for continuous production monitoring purposes has been demonstrated via a series of simula-
tion-based cases. Among the used algorithms, the deep learning methods provided the most accurate 
results combined with reasonable time for model training. 
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Introduction
Knowledge of multiphase flow rates from each well in a production network is an important component for optimal 
management of oil and gas reservoirs. The information on the multiphase rates of produced oil, gas, and water can 
significantly facilitate decision making on production stimulation, optimization of field operations, and control. 
Additionally, continuous production monitoring provides critical information for reservoir history matching and 
helps to estimate the hydrocarbon reserves. 

Currently, the industry offers two solutions: a test separator or a multiphase flow meter. Both of these methods 
have certain disadvantages. The test separators are bulky, provide a slow response to rapid flow changes, and 
require sufficient installation space. The multiphase meters are generally expensive and require regular mainte-
nance. More importantly, no technology exists that provides measurements in all possible flow conditions with 
acceptable accuracy in a single multiphase meter. 

To overcome these challenges, methods of indirect flow rate calculation have been introduced. The technique, 
called virtual flow metering — also known as soft sensing, data validation, and reconciliation, or soft multiphase 
flow metering — has been widely used to estimate the multiphase rates from conventional sensors, such as downhole 
pressure and temperature gauges. All of these methods take advantage of using instrumentation, which is already 
available in the well, thereby becoming a cheaper alternative to the regular multiphase flow meters. Virtual flow 
metering uses all the data available from the sensors to calculate the flow rates by applying mathematical modeling. 
This computational algorithm can be based on the rigorous first principle equations describing the flow, or be 
represented by some data-driven operator establishing the hidden relationship between available measurements 
and target flow rates. The complete classification of all virtual flow meter methods is available1. 

A data-driven approach does not require any background information on underlying physics. Instead, it is based 
on the available data and uses some machine learning techniques, which build predictive models directly from 
the data available. Contrary to other methods, the data-driven virtual flow meter is very easy to set up and deploy, 
however, these methods are normally well specific and fail to perform satisfactory if the conditions are outside a 
certain data range. There are multiple examples where machine learning and data analytic methods were used as 
the predictors for multiphase production technology2-4. The popularity of machine learning has risen dramatically, 
due to the recent developments of neural networks, improvement of hardware resources, and exponential growth 
of data available from an oil field. All of these factors helped to drastically increase the resolution and predictive 
capabilities of computational models under development.  

The goal of the present article is to demonstrate the workflow and results of implementing different types of a 
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data-driven virtual flow meter, such as a basic artificial 
neural network (ANN), advanced gated recurrent unit 
(GRU), and a gradient boosting method. Such informa-
tion is essential to increase the understanding of which 
machine learning method is more suitable to certain 
conditions or data. The analysis includes a discussion 
on how noisy data needs to be processed, which is an 
important issue for real-life applications. 

Virtual Flow Metering: Flow Modeling
The critical component of any virtual flow metering 
system is the flow model, which relates observed quan-
tities, i.e., measurements, to the hidden ones, i.e., rates. 
As it has been previously mentioned, the flow models 
can be either data-driven or physics-driven, the latter 
is also subdivided into steady-state and transient types. 
Moreover, a different classification is proposed here, 
where the virtual measurements are performed either 
in an open or closed loop paradigm. 

There are generic challenges associated with both ap-
proaches; the data from the field is never perfect, and 
there is noise contamination or systematic biases that need 
to be considered before either of the virtual flow meter 
approaches can be put into practice. In addition, for the 
physics-based virtual flow meter, the quality of the first 
principle models is essential. Normally, the simplified 
approach is used, where the multiphase flow is treated 
as 1D, which is obtained from cross-sectional averaging 
of the conservative equations and supplementing it with 
flow regime independent closure terms5. These models 
follow the main conservation laws, although they rely 
heavily on the empirical correlations obtained from the 
lab experiments6. By default, all of these models are only 
rough approximations of reality and never describe the 
production system perfectly. As the result, accounting 
model error and measurement noise is an important part 
of a virtual flow meter workflow, which can be done in 
a closed loop manner, Fig. 1.

In this approach, the predictions of the model are 
compared with the measurements via data assimilation 
algorithms. Measurements include information from dif-
ferent sensors, which provide some flow-related quantity, 
which is not one of direct interest. Consequently, there 
is a strong connection between the unknown flow rates 
and the readings from these sensors. Some measure-
ments are more easily obtained at the surface conditions 
rather than downhole, although the latter are usually 
accessible only at a few locations. On the other hand, 
the physical flow model can estimate the multiphase flow 
rate if it is properly initialized. Moreover, due to different 
simplifications previously mentioned and uncertainty 
in the initial conditions, the resulting predictions will 
deviate from real values. Therefore, these two sources of 
information, the model and the measurements, cannot 
be used for the accurate prediction of multiphase rates 
if used independently. 

Data assimilation is the process that integrates the mea-
surements from the actual sensors and the simulated 
outputs of the flow model in an intelligent way, which 
is a mismatch between predicted and measured data. 
One can see two different approaches for incorporating 

measurement data into the flow model: (1) variation data 
assimilation, which is based on the minimization of a cost 
function within a certain time interval7, and (2) filtering, 
where the state of the system is updated every instant 
when new data become available8. While the variational 
data assimilation tries to iterate state variables to fit the 
measurements over a certain time window (also called 
an assimilation window), the filtering algorithms act in 
real-time, integrating measurements at the current time 
step into the model. 

Note that here the outputs of the model and measure-
ments can be completely different, as the closed loop 
virtual flow meter provides model-based predictions 
of both measured and unmeasured quantities. For that 
purpose, the multiphase flow model of the system should 
be described theoretically, allowing unequivocal predic-
tions of dynamic variables (system output) with a given 
model input. The model does not necessarily need to 
be only physics-based; a data-driven approach could be 
used in this paradigm as well. 

The use of dynamic mode decomposition9 is especially 
attractive for this purpose, as it offers a purely explicit 
approximation of dynamics in state space representa-
tion. In addition, one could consider the application of 
the hybrid methods, where the first principle knowl-
edge is somehow embedded into the machine learning 
algorithm to constrain the uncertainties and improve 
predictive capabilities. Examples of closed loop virtual 
flow metering can be found in Lorentzen et al. (2016)10 
and Gryzlov (2009)11.

The open loop virtual flow meter is based on the direct 
use of a function that maps the input measurements 
to the target rates. This mapping is also referred to as 
training (or calibration), as it adjusts the parameters of 
this function to match the known input-output pairs. 
Once the model is prepared it can be immediately used 
by feeding it with newly available measurements. 

The data-driven methods are especially suited for open 
loop applications. For the neural networks, for instance, 
the training corresponds to the adjustment of model 
weights and biases connecting neurons. The optimal 
model parameters are formulated as the minimal dif-
ference between the prediction of the algorithm and 

Fig. 1  The closed loop virtual flow meter workflow.
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the true flow rates. 
Although it may look similar, the formulation of the 

cost function constitutes the essential difference from 
the closed loop approach, where the model predictions 
are compared to all possible measurements, not just 
the output rates, which are not normally available. In 
addition, in the open loop framework, the model is tuned 
only once, before the application, while the closed loop 
approach corrects its behavior every time if there is a 
significant deviation of the model from the measurements. 

The distinction between these two approaches can be 
formulated differently. While data-driven methods look 
at the best mathematical functions, which relate input 
and output measurements, the closed loop approach 
tends to adjust the behavior of the model in such a way 
that it will follow the measured trajectory more precisely. 

Data-Driven Algorithms: Theory and 
Applications
Virtual flow metering is fundamentally an extrapolation 
problem, namely with the set of measurements over a 
defined training period it is necessary to predict the future 
state of the system utilizing testing data. Data-driven 
forecasting algorithms can be distinguished between 
the statistical12, such as regression and autoregression, 
or machine learning methods13. In this study, the virtual 
flow meter is built using various types of neural networks, 
which are outlined in this section.

The basic feedforward ANN is one of the most com-
monly used data-driven methods for prediction prob-
lems. It consists of interconnected neurons transferring 
information to each other and characterized by weights, 
biases, and nonlinear activation functions. Although 
it was superseded by complex deep learning methods, 
ANN is still frequently used as a baseline model for many 
forecasting tasks. The main disadvantage of ANN is that 
the information is only transferred from input to output, 
leading to poor performance in highly dynamic systems.

In contrast, the recurrent neural networks are more 
suitable to deal with transient data. Long short-term mem-
ory (LSTM) is a well-known example of a deep learning 
method and accounts both for short-term and long-term 
dynamics in the data14. The GRU in a way is similar to 
LSTM, but characterized by a simpler architecture with 
fewer parameters, and therefore, it is significantly faster 
to train using fewer hardware resources15.

Ensemble learning methods is another class of tech-
niques for prediction. The main idea behind this is to 
construct a combination of multiple learning algorithms 
that perform better than if used individually. Boosting is 
an efficient method for nonlinear forecasting that defines 
the predictor by combining many simple models. The 
example of a simple model, which is also referred to as 
the base model, can be a regression tree. Once these 
simple models are processed via a boosting algorithm, 
an accurate prediction can be made. Extreme gradient 
boosting (XGBoost) is a popular modern algorithm for 
oil and gas applications, which is more intuitive and 
flexible contrary to regular machine learning methods16. 

In this article, different data-driven methods are 

analyzed. ANN is chosen as a baseline method and 
compared to the performance of recurrent GRU and 
ensemble XGBoost. The evaluation is done on two use 
cases describing the prediction of multiphase rates in 
different production scenarios. It should be stressed that 
similar problems have been considered earlier17, with 
different types of neural networks, such as LSTM and 
temporal convolutional networks.

Despite the variety of machine learning methods avail-
able, the workflow for preparation and practical deploy-
ment is similar. First, the time series of measurements, 
X(t), together with the time series of target rates, Y(t), are 
considered. Both are time-dependent, with the number 
of data points equal to the number of available measure-
ments over some interval. The problem of the multiphase 
flow rate estimation can also be defined as time series 
regression following the machine learning nomenclature. 

All of the data is split into two parts. The first part is 
needed to prepare (train) the model, and the second one 
is used to test the performance of the algorithm. Both 
parts of the data are first transformed into multiple se-
quences. Then, each component from X is mapped to a 
corresponding entry of Y. Normally, the length of each 
element of the input sequence equals several time steps, 
while the target sequence is presented by a single point 
only; therefore, measurements with history are used to 
predict the values of multiphase rates at a current time 
(sequence-to-point). The number of shifted time steps 
in the input sequence is one of the tuning parameters 
in the data-driven method, Fig. 2.

In summary, the data-driven virtual flow meter is a 
computational operator that relates X to the entries of 
vector Y. 
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This operator is initially obtained during the training 
phase and then used to make predictions of multiphase 
rates using the sequence-to-point prediction scheme.

Fig. 2  The sequence-to-point prediction scheme.
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Practical Example 1: Simulated Production 
Data
A simplified example of a production system is considered 
in the first scenario, Fig. 3. The geometry of a well is 
defined by a horizontal part followed by a vertical seg-
ment of the well. The last part of the horizontal section 
is slightly inclined downwards to induce additional flow 
dynamics. The fluids from the reservoir enter the well via 
perforations located close to the inlet, which is simulated 
by individual source terms for liquid, gas, and water. 
Wellbore production is controlled using a topside choke. 

Pressure and temperature sensors installed downhole 
provide continuous information about the wellbore’s 
performance. Topside measurements for oil, gas, and 
water rates are provided by a generic multiphase flow. If 
the flow rate measurements become unavailable for some 
reason, the values of all flow rates need to be estimated 
using a concept of a data-driven virtual flow meter using 
only the readings from pressure and temperature gauges.

All the flow data was generated using the commercially 
available multiphase OLGA simulator18. The simulations 
have been performed for 4 hours of production, distin-
guished by three different production regimes defined 
by different choke settings. The total number of data 
points is 7,200 per one time series. The first half is used 
to setup the virtual flow meter via training of a machine 
learning algorithm, and the rest is used to utilize the 
quality of estimated values. The accuracy of predictions 
is evaluated using a normalized relative error, which 
defines the deviation of prediction over the true value 
within the full-scale range, Eqn. 2:
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All three machine learning algorithms discussed in 
the previous section were used as candidates for the 
data-driven virtual flow meter. The architecture of all 
methods was chosen empirically to ensure convergence 
during training and good predictive capabilities. The 
ANN was built with three hidden layers, with 50 neurons 
for each layer. The structure of the deep GRU network 
was set up similarly with three hidden layers and 25 
units in each layer. The XGboost architecture included 
150 estimators and L1 regularization term equal to 0.1, 
with all other parameters set to default. 

The length of the input sequences for ANN and GRU 
was set to 60 time steps, while for XGBoost it was set 
to 20 time steps only. The example of estimates with 
XGBoost is given in Fig. 4, where the predictions are 
plotted with red, the true values are depicted with blue, 
and the vertical dashed line indicates the split between 
the training and test data sets.

The accuracy of predictions defined by Eqn. 2 is slightly 
decreased for the test data, while it is still reasonably 
good for most of the time data. The error might exhibit 
instantaneous values up to 35% during a rapid increase 
of the observed flow rates, though on average it is well 
within the acceptable range — below 5% relative. This 
is indicated in Fig. 5 where the uncertainty distribution 
for all three prediction methods used is plotted.

The performance of all predictive methods is compared 
in Table 1, where the integrated characteristics of each 
model are given. The error distribution is averaged over 
the entire testing period for each time series predicted 
and then averaged again over all three fluid phases. The 
training time corresponds to the computational effort, 
which is required to prepare a model on a regular desk-
top computer. As it follows from the obtained results, 
the GRU network produced the most accurate results, 

Fig. 3  A schematic description of the production system for the virtual flow meter application.
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however, the required time for its training was significant. 
The accuracy of the ANN is comparable to the GRU, 

although the model was trained approximately five times 
faster. With the XGBoost, which produced the least ac-
curate results, the model was trained almost instantly. 
It is noted that the accuracy of the last method could be 
improved by choosing the best possible hyperparameters 
using a cross validation technique. Subsequently, even 
with the obtained accuracy, XGBoost can be considered 
as a computationally efficient tool to perform an initial 

screening of the available data. The use of advanced 
methods such as GRU is not justified, as it does the same 
job as a regular neural network, but requires more time.

Practical Example 2: Simulated Well Test 
Data
Another practical example considers a publicly available 
data set discussing transient well testing. This data set 
has already been analyzed from the point of virtual flow 
metering17, 19. The data set includes the simulated time 
series of input pressure and temperature measurements 
and output flow rates, which are represented by five 
different time intervals. Each interval corresponds to 
a certain choke opening, leading to different behavior 
in the data, which varies from almost static (first and 
the last periods) to fully dynamical. The measurements 
are also corrupted by the noise, which complicates the 
analysis, Figs. 6 and 7. 

The prediction scheme is formulated similarly to the 
previously discussed problem: given pressure and tem-
perature measurements as inputs, it is necessary to fore-
cast the multiphase flow rates of oil, gas, and water. The 

Fig. 4  An example of the estimated multiphase rates of (a) gas, (b) oil, and (c) water (from left to right) with XGBoost. The dashed vertical line divides 
the training and test data sets.

Fig. 5  Relative uncertainty (a) gas, (b) oil, and (c) water predictions with different methods. The dashed vertical line divides the training and test data 
sets.

Average Error 
(%)

Training Time  
(s)

ANN 1.37 294

GRU 1.25 1,690

XGBoost 2.63 1.08

Table 1  Comparing the performance of data-driven methods.



7 The Aramco Journal of Technology Summer 2021

machine learning model was first prepared by splitting all 
the available data for training and testing, which includes 
the first three and last two flow intervals, respectively. 
Second, the data was preprocessed: the noisy component 
was removed by the Savitzky-Golay filter20. This filter 
approximates the time series data by a finite number of 
low degree polynomials, which ensures minimal loss of 
information, compared to other methods such as the low 
pass filter or moving average. Before the actual training, 
the feature scaling was used, which effectively centered 
the data around the mean with a unit standard deviation. 

For all three methods (ANN, GRU, and XGBoost), 
the data was split into sequences of 10 time steps each 

for training and prediction purposes. Both the ANN 
and GRU employed a similar architecture, where three 
hidden layers with 10 neurons were used. XGboost was 
set up with 500 estimators and L1 regularization term 
equal to 0.9, and L2 regularization term equal to 10, 
with default values for all remaining parameters. The 
evaluation of all three models for both training and test 
data sets is given in Figs. 8 to 10, where the estimated 
flow rates are depicted by the black curve compared to 
the noisy ground truth.

The simulated results are summarized in Table 2. For 
the accuracy, the average relative error over the whole 
testing data is compared.

Based on the results, the general performance of the 
ANN is the best among the methods used. Subsequently, 
looking at the quality of predictions one could notice that 
a regular neural network is unable to reconstruct properly 
complex nonlinearities in the data. This is illustrated 
at best by the second flow period in the training data 
set, where the ANN follows a non-monotonic behav-
ior, which is transferred to the solution from the input 
pressure time series. 

Both the GRU and XGBoost, in contrast, better de-
scribe the data and do better prediction despite the av-
erage quality metric being worse. Despite the conclu-
sion for the previous case, for that particular scenario, 
the application of a recurrent network is well advised. 
Moreover, the best results have been obtained with 
XGBoost, which demonstrated the best quality results 
at the shortest training time. 

Conclusions
The application of different data-driven methods for the 
problem of production time series analysis and forecasting 
has been analyzed in this work. Following the results of 
computationally based scenarios, the suggested open loop 
approach for the virtual flow metering is a convenient 
and robust tool to make forecasts directly from the data. 
This work can be summarized as follows:

• Different approaches for virtual flow metering have 
been considered, outlining the importance of flow 
modeling, which is a core component of any methods 
for intelligent production monitoring.

• Various data-driven algorithms are introduced and 
evaluated for the practical applications of production 
data forecasting.

• Depending on the use case considered, different types 
of machine learning methods could have advantages 
over each other. Generally, the choice of more ad-
vanced techniques is reasonable, although the com-
putational effort to prepare the model is increased.

• In most cases the use of a regular ANN or advanced 
XGBoost is sufficient to provide baseline estimates 
for most types of production data available. 

The future work should be concentrated around the 
practical application for real-life scenarios. The problem 
of measurement noise, which was simply filtered out in 
this application, would require special treatment, espe-
cially for any measurement outside the training range. 

Fig. 6  The pressure and temperature measurements (inputs).

Fig. 7  The flow rate time series (outputs).
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Fig. 8  The multiphase rates forecast for the ANN trained on the first three flow periods: (a) oil, (b) water, and (c) gas rates.

Fig. 9  The multiphase rates forecast for the GRU trained on the first three flow periods: (a) oil, (b) water, and (c) gas rates.

Fig. 10  The multiphase rates forecast for the XGBoost trained on the first three flow periods: (a) oil, (b) water, and (c) gas rates.



9 The Aramco Journal of Technology Summer 2021

Acknowledgments
This article was prepared for presentation at the SPE 
Symposium: Artificial Intelligence — Toward a Resilient 
and Efficient Energy Industry, al-Khobar, Saudi Arabia, 
October 18-19, 2021.

References
1. Bikmukhametov, T. and Jäschke, J.: “First Principles and 

Machine Learning Virtual Flow Metering: A Literature 
Review,” Journal of Petroleum Science and Engineering, Vol. 
184, January 2020.

2. Spesivtsev, P., Sinkov, K., Sofronov, I., Zimina, A., et al.: 
“Predictive Model for Bottom-hole Pressure Based on 
Machine Learning,” Journal of Petroleum Science and Engi-
neering, Vol. 166, July 2018, pp. 825-841.

3. Omrani, P.S., Dobrovolschi, I., Belfroid, S., Kronberger, 
P., et al.: “Improving the Accuracy of Virtual Flow Meter-
ing and Back Allocation through Machine Learning,” SPE 
paper 192819, presented at the Abu Dhabi International 
Petroleum Exhibition and Conference, Abu Dhabi, UAE, 
November 12-15, 2018. 

4. Gryzlov, A., Safonov, S., AlKhalaf, M. and Arsalan, M.: 
“Novel Methods for Production Data Forecast Utilizing 
Machine Learning and Dynamic Mode Decomposition,” 
SPE paper 202792, presented at the Abu Dhabi Interna-
tional Petroleum Exhibition and Conference, Abu Dhabi, 
UAE, November 9-12, 2020. 

5. Spesivtsev, P.E., Kharlashkin, A.D. and Sinkov, K.F.: 
“Study of the Transient Terrain-Induced and Severe 
Slugging Problems by Use of the Drift-Flux Model,” SPE 
Journal, Vol. 22, Issue 5, October 2017, pp. 1570-1584. 

6. Kanin, E.A., Osiptsov, A.A., Vainshtein, A.L. and Burnaev, 
E.V.: “A Predictive Model for Steady-State Multiphase Pipe 
Flow: Machine Learning on Lab Data,” Journal of Petroleum 
Science and Engineering, Vol. 180, September 2019, pp. 727-746.

7. Robertson, D.G. and Lee, J.H.: “A Least Squares Formula-
tion for State Estimation,” Journal of Process Control, Vol. 5, 
Issue 4, August 1995, pp. 291-299.

8. Jazwinski, A.H.: Stochastic Processes and Filtering Theory,  
1st edition, Academic Press, New York, 1970, 376 p. 

9. Gryzlov, A., Safonov, S., AlKhalaf, M. and Arsalan, M.: 
“Dynamic Mode Decomposition for Virtual Flow Meter-
ing,” EAGE Geomodel 2020, Vol. 2020, September 2020,  
pp. 1-5.

10. Lorentzen, R.J., Stordal, A.S., Luo, X. and Naevdal, G.: 
“Estimation of Production Rates by Use of Transient Well 
Flow Modeling and the Auxiliary Particle Filter: Full-
Scale Applications,” SPE Production and Operations, Vol. 31, 
Issue 2, May 2016, pp. 163-175. 

11. Gryzlov, A., Mudde, R.F. and Schiferli, W.: “Inverse 
Modeling of the Inflow Distribution for the Liquid/Gas 
Flow in Horizontal Pipelines,” paper presented at the 
14th International Conference on Multiphase Production 
Technology, Cannes, France, June 17-19, 2009. 

12. Ho, S.L. and Xie, M.: “The Use of ARIMA Models for 
Reliability Forecasting and Analysis,” Computers and 
Industrial Engineering, Vol. 35, Issues 1-2, October 1998, pp. 
213-216. 

13. Sagheer, A. and Kotb, M.: “Time Series Forecasting of 
Petroleum Production Using Deep LSTM Recurrent 
Networks,” Neurocomputing, Vol. 323, January 2019, pp. 
203-213.

14. Hochreiter, S. and Schmidhuber, J.: “Long Short-Term 
Memory,” Neural Computation, Vol. 9, Issue 8, November 
1997, pp. 1735-1780. 

15. Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, 
D., et al.: “Learning Phrase Representations Using RNN 
Encoder-Decoder for Statistical Machine Translation,” 
paper published in Proceedings of the 2014 Conference on 
Empirical Methods in Natural Language Processing (EMNLP), 
October 2014, pp. 1724-1734.

16. Chen, T. and Guestrin, C.: “XGBoost: A Scalable Tree 
Boosting System,” paper published in Proceedings of the 
22nd ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining, August 2016, pp. 785-794.

17. Gryzlov, A., Mironova, L., Safonov, S. and Arsalan, M.: 
“Artificial Intelligence and Data Analytics for Virtual 
Flow Metering,” SPE paper 204662, prepared for pre-
sentation at the SPE Middle East Oil and Gas Show and 
Conference, Manama, Kingdom of Bahrain, November 
28-December 1, 2021.

18. Bendiksen, K.H., Maines, D., Moe, R. and Nuland, S.: 
“The Dynamic Two-Fluid Model OLGA: Theory and 
Application,” SPE Production Engineering, Vol. 6, Issue 2, 
May 1991, pp. 171-180.

19. Andrianov, N.: “A Machine Learning Approach for Vir-
tual Flow Metering and Forecasting,” paper presented at 
the 3rd IFAC Workshop on Automatic Control in Offshore 
Oil and Gas Production, Esbjerg, Denmark, May 30-June 
1, 2018.

20. Savitzky, A. and Golay, M.J.E.: “Smoothing and Differen-
tiation of Data by Simplified Least Squares Procedures,” 
Analytical Chemistry, Vol. 36, Issue 8, July 1964, pp. 1627-
1639.

Accuracy (%) Training 
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This article presents a laboratory study on the combination of SmartWater with microsphere injection 
to improve oil production in carbonates, which increases the sweep efficiency and oil displacement effi-
ciency. In this study, the properties of a micro-sized polymeric microsphere were investigated, including 
size distribution, rheology, and zeta potential in SmartWater, compared with conventional high salinity 
water (HSW). Coreflooding tests using natural permeable carbonate cores were performed to evaluate 
flow performance and oil production potential at 95 °C and 3,100 psi pore pressure. The flow performance 
was evaluated by the injection of 1 pore volume (PV) microspheres, followed by excessive water injection. 
Oil displacement tests were also performed by injecting 1 PV of microspheres dissolved in SmartWater 
after conventional waterflooding. 

The median particle size of the microsphere in conventional injection water with a salinity of 57,670 
ppm was about 0.25 µm. The particle size was increased by 50% to 100% with reduced elastic modulus 
when the microsphere was dispersed in SmartWater with lower salinity. The zeta potential value of the 
microsphere was decreased in SmartWater compared to that in the conventional injection water, show-
ing a more negatively charged property. The flow performance of microsphere solutions in the carbonate 
cores was found to be dependent on their particle size, strength, and suspension stability. 

The results from the coreflooding tests showed that the microsphere dispersed in SmartWater would 
result in higher differential pressure than that observed in conventional injection water. The SmartWater 
caused the microspheres to swell larger, but with softer particles and with better suspension stability, 
which enhanced both the migration and blocking efficiency of the microsphere injection. The oil dis-
placement tests confirmed that the microsphere in SmartWater displaced more oil than that obtained 
with conventional injection water. 

This result was clearly supported by the higher differential pressure from the microsphere injection in 
SmartWater. The oil bank appeared hysteretically in the post-water injection stage, which was quite 
different from the reported findings of typical mobility controlling agents in the existing knowledge. The 
microspheres were observed in the coreflood produced fluids, indicating the improvement of microsphere 
migration by SmartWater. 

This work, for the first time, demonstrates that the combination of SmartWater and microsphere in-
jection yields additional oil production. The proposed hybrid technique can provide a cost-effective way 
to improve waterflooding performance in heterogeneous carbonates.

SmartWater Synergy with Microsphere Injection  
for Permeable Carbonates
Dongqing Cao, Dr. Ming Han, Salah H. Saleh, Dr. Subhash C. Ayirala and Dr. Ali A. Yousef

Abstract  /

Introduction
SmartWater, by tuning ion compositions of injection water, is a technology to increase oil production in carbonate 
reservoirs1, 2. The mechanisms of effective oil displacement by SmartWater in carbonates were reported as wettability 
alteration3-5, multicomponent ion exchange6, 7, mineral dissolution8, fines migration9, and pH increase7, 10. Besides 
these mechanisms focusing on fluid-rock interface, SmartWater positively impacted released oil ganglion dynamics 
for efficient oil mobilization through the interactions at the fluid-fluid interface11-13. A single well chemical tracer 
test demonstrated the promising potential of SmartWater with approximately seven saturation unit reductions in 
residual oil after conventional water injection in permeable carbonate14. 

SmartWater injection with other chemicals is considered as a potential optimization route to improve the per-
formance by enhancing or supplementing the displacement mechanisms. The chemical flooding agents, such 
as polymer, surfactant, and alkaline, showed good synergy effects and positive oil displacement results with 
SmartWater15-17. Researchers have also studied the performance of low salinity water combined with several gel 
materials, such as preformed particle gels (PPG) and bulk gels in the fractured reservoir. Alhuraishawy et al. (2016, 
2017)18, 19 combined low salinity water flooding and PPG to increase oil production in fractured carbonate reservoirs.

Compared to traditional bulk gel treatments, PPG formed stronger plugging but did not form an impermeable 
cake in the fracture surface; therefore, PPG allowed low salinity water to penetrate into the matrix to modify its 
wettability, thereby producing more oil from the matrix. Alhuraishawy et al. (2017)20 also studied the combined 
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low salinity and PPG in various fractured core models, 
including a five-spot sandstone model, a non-crossflow 
heterogeneous model21, open fractures, and partially 
open fractures19, 20, 22. Brattekas et al. (2015, 2020)23, 24 
studied the low salinity chase waterflooding after bulk 
gel placement. The results showed that low salinity water 
improved the blocking capacity of the gel, and subse-
quently flooded the matrix during chase floods, which 
provided additional benefits to the waterflooding.

Microsphere, a kind of particle gel, has drawn great 
attention due to the unique properties for in-depth fluid 
diversion in permeable sandstone and carbonate in recent 
years25-27. Synthesized by the inverse emulsion polymer-
ization method28, the polymeric microsphere presents a 
uniform spherical shape. With a crosslinking structure, 
the thermal and mechanical stabilities are better than the 
corresponding linear polymer29, 30. Similar with other gel 
materials, the microsphere has complementary mecha-
nisms on oil production with SmartWater. 

The mechanism of microsphere injection is to sterically 
block the flow channel by adsorption or strain and divert 
the flow to the uninvaded areas and increase the sweep 
efficiency. The particle size of the microsphere ranges 
from a nanometer to a micron, which is in the same 
level with the pore size of the permeable reservoir. This 
makes the microsphere applicable to the reservoir matrix, 
which is different from PPG or bulk gel. Compared with 
water-soluble chemicals, microsphere is a chemically 
stable material, it has no negative effect on the low sa-
linity water/rock/crude oil interactions. SmartWater 
can work normally and produce more oil in the unswept 
area. SmartWater synergy with microsphere injection 
can be a novel hybrid technique to increase the sweep 
efficiency and oil displacement efficiency in permeable 
carbonate reservoirs.

In this work, the effect of SmartWater on the micro-
sphere bulk properties was evaluated. The flow properties 
and oil production performance of SmartWater synergy 
with microsphere injection were investigated by using 
coreflooding tests.

Experimental
Brine and Chemicals

Synthetic injection water and SmartWater were used to 
prepare the microsphere solutions. The total dissolved 
salt (TDS) of the high salinity water (HSW) as injection 
water was 57,670 mg/L. SmartWater is a kind of low sa-
linity water with optimized ion composition. In this work, 
the 10 times and 100 times diluted injection water were 
tentatively used as SmartWater for evaluation purpose. 
Connate water was used to saturate the core plugs. Table 
1 shows the ion compositions of the brines. The crude 
oil was degassed oil with viscosity of 2 mPa.s at 95 ºC.

Microsphere

The microsphere was initially in the form of W/O emul-
sion. The microsphere was in the water phase with a 
solid content of 39.5%. The microsphere sample was 
prepared in volume percentage. The method was to add 
quantitative microsphere into the brines by magnetically 
stirring them at 800 rpm.

Microsphere Bulk Property Test

The bulk properties of the microsphere in brines, in-
cluding particle size, zeta potential, and strength were 
tested. The particle size of the microsphere samples was 
measured by using a laser diffraction particle size ana-
lyzer. The zeta potential of the microsphere was tested 
by a Malvern zeta potential analyzer. The strength of 
the concentrated microsphere samples was measured 
by the strain sweep and frequency sweep using a TA 
Instruments rheometer.

Ion Na+ (mg/L) Ca2+ (mg/L) Mg2+ (mg/L) Cl- (mg/L) HCO3
- 

(mg/L) SO4
2- (mg/L) TDS (mg/L)

HSW 18,300 650 2,110 32,200 120 4,290 57,670

SmartWater 1 1,830 65 211 3,220 12 429 5,767

SmartWater 2 183 6.5 21.1 322 1.2 42.9 576.7

Connate Water 59,491 19,040 2,439 132,060 354 350 213,734

Table 1  The ion compositions of the brines used.

Core No. Diameter 
(cm) Length (cm) PV (ml) Brine Perm. 

(mD)
Original Oil 
in Core (ml) Test Type

31 3.83 4.13 12.838 405 — Microsphere injection test

241 3.80 3.85 8.713 460 6.852 Oil displacement test

44 3.81 4.24 10.071 420 9.181 Oil displacement test

Table 2  Basic information of the carbonate core plugs used in the test.
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Core Plugs

The core plugs in the microsphere injection tests and oil 
displacement tests were natural carbonate cores. Table 2 
shows the basic core information and usage in the tests. 
The permeability of the three core plugs was from 405 
mD to 460 mD, which were typical permeable carbonates. 

Microsphere Injection Test

The microsphere injection tests were conducted by the 
AFS-300 coreflooding system, Core Lab, USA. Figure 
1 is a diagram sketch of the system. The procedures are 
as follows:

1. Saturate the core plug with connate water by vacuum. 

2. Load the core plug into the core holder. Set the con-
fining pressure at 600 psi and the pore pressure at 
100 psi. 

3. Test the brine permeability of the core by connate 
water at different flow rates of 0.5 cc/min, 1 cc/min, 
and 2 cc/min.

4. Flush the core plug with injection water for 5 pore 
volumes (PV).

5. Heat the core holder to 95 ºC and balance for 4 hours. 
Increase the confining pressure and pore pressure 
step by step to 4,500 psi and 3100 psi, respectively.

6. Test the baseline pressure by injection water at 0.5 
cc/min.

7. Inject the microsphere solution at 0.5 cc/min and 
record the differential pressure.

8. Switch the flow to SmartWater at 0.5 cc/min for 
about 5 PV and record the differential pressure.

9. Perform additional injection water and SmartWater 
injection until a stable differential pressure is reached.

Oil Displacement Test

The performance of the microsphere on incremental oil 
production was evaluated by the oil displacement tests. 
The procedures are as follows:

1. Saturate the core plug with connate water by vacuum.

2. Load the core plug into the core holder. Set the con-
fining pressure at 600 psi and the pore pressure at 
100 psi. 

3. Test the brine permeability of the core by connate 
water at different flow rates of 0.5 cc/min, 1 cc/min, 
and 2 cc/min. Unload the core plug from the core 
holder.

4. Saturate the core plugs with crude oil by high speed 
centrifuge at 6,000 r/min for 1 hour. Reverse the core 
plug and centrifuge again with the same rotational 
rate and time. Record the weight before and after 
centrifuge.

5. Age the saturated core at 95 ºC for 3 weeks to restore 
the wettability.

6. Fresh oil flood. Reload the aged core into the core 
holder. Set the confining pressure to 600 psi and the 
back pressure to 100 psi. Inject fresh oil into the core 
to displace the aged oil.

7. Heat the core holder to 95 ºC and balance for 4 hours. 
Increase the confining pressure and pore pressure 
step by step to 4,500 psi and 3,100 psi, respectively.

8. HSW flooding at 0.5 cc/min until a stable differential 
pressure and oil production. Perform a bump water 
flooding using flow rates of 1 cc/min, 2 cc/min, and 
4 cc/min.

9. Microsphere in SmartWater injection at 0.5 cc/min 
for 1 PV.

10. Chase the HSW injection at 0.5 cc/min until a stable 
differential pressure and oil production is reached.

Results and Discussion
Microsphere Bulk Properties
The effect of SmartWater on the microsphere bulk proper-
ties was tested, including particle size, zeta potential, and 
strength. Figure 2 shows the particle size distribution of 
the microsphere in different brines. Table 3 summarizes 

Fig. 1  Diagram sketch of the coreflooding system.
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the microsphere’s bulk properties in different brines. The 
microsphere is a macro solid particle in nature. When 
dispersed in the brines, the microsphere samples were 
homogeneous, white, and opaque liquid. The median 
particle size in the injection water was 0.25 µm. In the 
two kinds of SmartWater, the particle size increased to 
0.32 µm and 0.67 µm. 

The microsphere is a water swollen polymeric mate-
rial. It has a macromolecular network that can contain 
a large fraction of water within their structure. This 
water absorbing capacity comes from the osmotic pres-
sure between the brine and the microsphere network 
that drives the water into the polymeric network. Low 
salinity water increases the osmotic pressure between 
the microsphere and the brine and more water can be 
adsorbed into the microsphere. The swelling capacity 
is therefore improved.

Consequently, the strength of the particle decreased 
from 1,963 Pa to 1,678 Pa, due to absorbing water. The 
microsphere in brines is an unstable polydisperse system. 

The particles tend to coalescent and precipitant, especially 
in the high salinity brines. Zeta potential is a key indicator 
of the coalescence and sedimentary stability of particle 
dispersions. As shown in Table 3, the zeta potentials of 
the microsphere sample in the injection water was very 
low as -4.5 mV. The high salinity compacted the elec-
tronic double layers of the colloid particle, resulting in 
the low zeta potential. In the two SmartWater samples, 
the zeta potential increased to -9.0 mV and -20.1 mV. 
The high zeta potential could improve the suspension 
stability of the microsphere samples.

Microsphere Flow Tests
Three microsphere flow tests were conducted to study 
the effect of SmartWater on the microsphere flow in 
the brine saturated carbonate cores. Table 4 shows the 
injection scenarios in the tests. The additional injection 
water and SmartWater injection after the first SmartWater 
injection was to check the pressure response of the reten-
tion microsphere in the core with salinity. SmartWater 
2 with a much lower salinity was used in three tests to 
obtain comparative results.

Figures 3, 4, and 5 show the differential pressure change 
during the injection process in the three tests, respective-
ly. In all three tests, the microsphere injection increased 
the differential pressure due to the steric blocking in the 
pores. For Test 1, in which the microsphere was suspend-
ed in SmartWater, the differential pressure increased 
from 0.05 psi to 0.24 psi during the 1 PV microsphere 
injection. The following SmartWater injection did not 
produce pressure change. An additional injection water 
and SmartWater injection was performed after the above 
two steps. As previously shown in Fig. 3, the differential 
pressure dropped abruptly when the injection switched 
to the HSW. When switch back to SmartWater, the 
differential pressure increased slowly back to a value 
close to the initial value. 

In Test 2, the microsphere was dispersed in the injection 
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Fig. 2  The particle size distribution of the microsphere in 
different brines.

Injection Water SmartWater 1 SmartWater 2

Media Particle Size (µm) 0.25 0.32 0.67

Strength (Pa) 1,963 1,754 1,678

Zeta Potential (mV) -4.5 -9.0 -20.1

Table 3  The microsphere’s bulk properties in different brines.

Test No. Injection Scenarios

1 Microsphere in SmartWater (1 PV) → SmartWater → Injection water → SmartWater

2 Microsphere in injection water (1 PV) → SmartWater → Injection water → SmartWater

3 Microsphere in injection water (2 PV) → SmartWater → Injection water → SmartWater

Table 4  Injection scenarios in microsphere flow tests.
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water. The differential pressure was increased to 0.1 
psi after the 1 PV microsphere injection. Different from 
Test 1, the differential pressure kept increasing in the 
subsequent SmartWater injection until a relative stable 
value was reached. In the additional injection water and 
SmartWater injection, the differential pressure behaved 
similar as in Test 1. 

Test 3 used the same injection scenarios but a larger 
microsphere injection volume compared with Test 2. 
Consequently, the differential pressure was higher than 
Test 2. 

The swelling capacity and dispersion stability of the 
microsphere with the brine salinity could be the reason 
of the differences. The microsphere in SmartWater had 
a larger particle size than in the injection water. This 
made the microsphere easily strain and block the pores. 
Therefore, the differential pressure produced by micro-
sphere injection in Test 1 was higher than in Test 2. In 
the following SmartWater injection, the microsphere 
could swell in Test 2 because it was initially dispersed 
in the injection water. This resulted in the continuous 
pressure increase in Test 2. The maximum differential 
pressure was even higher than Test 1. 

The swelling of the microsphere in SmartWater seems 
to be reversible. In the additional injection water and 
SmartWater injection, the differential pressure de-
creased or increased with the switch of water salinity. 
This could be used as a potential way to improve the 
microsphere deep migration capacity. Another impact 
of SmartWater on the microsphere is the suspension 
stability. The microsphere suspension tends to coalesce 
to large aggregates, especially at high temperature and 
high salinity conditions. 

When injected into the cores, the particles could be 
stuck due to the size exclusion to the large aggregates. 
This could happen in the test that the microsphere 
was suspended in the HSW. Microsphere particles are 
charged on the surface due to the hydrolysis of the polar 
group in the brine. SmartWater can increase the zeta 
potential of the microsphere and make the particle more 
repellent. The suspension stability is therefore enhanced, 
and less aggregates were formed with a better migration 
capacity; however, the improved particle size seems the 
dominate factor in this case.

Oil Displacement Tests

Two oil displacement tests were performed on carbonate 
core plugs to evaluate the oil production performance of 
the microsphere in SmartWater after the water injection. 
HSW was used in the waterflooding. To eliminate cap-
illary end effect, a bump HSW flooding was performed 
using flow rates of 1 cc/min, 2 cc/min, and 4 cc/min 
at the end of the waterflooding. The microsphere was 
suspended in SmartWater instead of injection water. 
The two tests used SmartWater 1 and SmartWater 2, 
respectively, as listed in Table 5 to study the effect of the 
salinity. The last step was to chase the HSW injection 
to evaluate if there was any positive response during 
the salinity variation. 

The oil production and differential pressure of the 
two tests — Test 4 and 5 — are shown in Figs. 6 and 7, 
respectively. Test 4 used the microsphere in SmartWater 
1, and the HSW injection produced oil of 27.7%. The 
three bump floods totally increased oil production by 
11.7%, indicating severe end effect. At each flow rate, the 
differential pressure first burst up and then decreased to 
stable. After the bump floods, the flow rate resumed 0.5 
cc/min until a stable differential pressure. The following 
microsphere injection increased differential pressure 
from 0.08 psi to 0.48 psi. Almost no oil was produced 
during the 1 PV microsphere injection. The oil bank 
appeared in the post-HSW injection. The oil production 
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Fig. 4  The differential pressure in Test 2. 
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Fig. 5  The differential pressure in Test 3. 

 
 
 
 
 
 
 
 

 
Test 
No. 

Fluid Core Plug 

4 0.5% Microsphere suspended SmartWater 1 241 
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increased by 3.9% at the end of the post-water injection. 
Test 5 used the microsphere in SmartWater 2, and the 

oil production of waterflooding at 0.5 cc/min was 33.2%. 
The three bump floods totally increased oil production 
by 12.5%. The following microsphere injection increased 
the differential pressure from 0.13 psi to 1.7 psi. As with 
the previous test, almost no oil was produced during the 
1 PV microsphere injection. The oil bank appeared in 
the post-HSW injection. The oil production increased 
by 7.0% at the end of the post-water injection.

As shown in the results, the oil production of the 
microsphere in SmartWater 2 was higher than that in 
SmartWater 1. The possible reason was the differential 
pressure. After the waterflooding, the oil was mainly 
left in the small pores or low permeability zones due to 
the oil-wet nature of carbonate cores. The microsphere 
retention blocked the large pores and diverted the water 
phase to the small pores or low permeability zone bearing 
remaining oil. The high differential pressure could over-
come the capillary pressure in these zones and promote 
the oil production. The maximum differential pressure 
of the microsphere injection in SmartWater 2 was 3.5 
times higher than the value in SmartWater 1. This came 
from the swelling of the microsphere. 

The lower brine salinity induced microsphere hydration 
and swelling more quickly. The swollen microsphere was 
much easily strained by the pores due to the steric effect. 
Moreover, the hydration produced additional interaction 
between the microsphere and the brine/rock. More en-
ergy dissipated when the microsphere flowed forward. 
All these made the differential pressure increase in the 
low salinity SmartWater 2 and produce more oil. It can 
be noted that the differential pressure decreased in the 
post-water injection in Test 5. 

As previously mentioned, the swelling of the micro-
sphere may be reversible in the high salinity brine. This 
may drive the microsphere forward to the deep position 
and mobilize the oil therein. The improved suspension 
stability by the low salinity water could also help the 
deep migration of the microsphere. The microsphere 
was observed in the produced fluid in both tests, which 
confirmed the deep migration of the microsphere in the 
salinity variation condition.

The oil bank appeared hysteretically at the post-water 
injection stage rather than at the breakthrough of the 
microsphere, which was different from the fractional 
flow theory. The polymer injection and microsphere 
injection are comparable with each other in the increasing 
differential pressure. The polymer thickened the water 
phase and slightly decreased the water permeability, 

which resulted in a higher oil fractional flow than the 
waterflooding at the same water saturation. A shock or 
oil bank formed at the polymer front, due to the velocity 
difference of the saturation waves. The oil produced 
along with the polymer breakthrough. The microsphere 
injection seems not to follow the same physics given to 
the hysteretic oil bank. 

The fractional flow theory applies only to the homoge-
neous media to the fluids. Although the cores were not 
ideally homogeneous, it could be taken as homogeneous 
because the polymer played the same role to the different 

Test No. Fluid Core Plug

4 0.5% Microsphere suspended SmartWater 1 241

5 0.5% Microsphere suspended SmartWater 2 44

Table 5  The microsphere and core plugs used in the oil displacement tests.
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parts. Moreover, the effects of the microsphere to different 
permeability parts were not identical. The microsphere 
selectively entered the high permeability parts due to the 
size exclusion and partially block them. Water flow was 
diverted to the low permeability part. The flow rates in 
the low permeability parts were increased and the oil 
could be displaced out. When the oil flowed forward to 
the outlet, it was not speeded up as in the polymer case, 
therefore, the oil bank lagged behind the microsphere. 

Conclusions
The bulk properties of the microsphere showed strong 
salinity dependency. The particle size of the microsphere 
increased from 0.25 µm in the injection water to a maxi-
mum 0.67 µm in the SmartWater with a lower strength. 
The zeta potential of the microsphere increased from 
-4.5 mV to -20.1 mV in the low salinity SmartWater.

The microsphere in the SmartWater produced a higher 
differential pressure in the carbonate core than in the 
injection water, but the maximum differential pressure 
after a chase of SmartWater injection was lower. There 
was a differential pressure response during the switch 
of the water salinity.

The microsphere in the low salinity SmartWater 2 
produced more oil than in SmartWater 1 after water-
flooding in the carbonate cores. The oil bank appeared 
hysteretically in the post-water injection stage in both 
tests. The microsphere was observed in the produced 
fluid due to the particle size change and the improved 
suspension stability of the microsphere in SmartWater.
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