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Network graphs represent a general language for describing complex systems and a framework for knowl-
edge discovery. Graph learning is a new concept with applications emerging in biomedicine, pharmacol-
ogy, smart mobility, and physical reasoning. When applied to petroleum systems, such as reservoir 
models, graphs provide unique differentiators for the abstraction of reservoir connectivity to facilitate 
“reservoir centric” machine learning applications. 

In this article, we demonstrate, for the first time, the application of Geoscience-based Deep Interaction 
Networks (GeoDIN) to learn complex physics relationships from 3D reservoir models for fast and accu-
rate prediction of subsurface spatiotemporal flow dynamics. We build the network graph with embedded 
subsurface and physics representations and train the machine learning model to “act like the reservoir 
simulator.” 

We use a simulation benchmark model for two-phase incompressible flow, with an approximate 1.1 
million grid size, one central injector and four corner producers. Static 3D grid properties include po-
rosity and permeability. We use a full physics simulation output to construct the interaction network 
graph, where graph node objects (nodes) represent reservoir grid cells. We embed the feature vector 
combining pore, oil, and water volumes, pressure, and relative permeability. The graph objects repre-
senting wells are connected with well completion factors. The producing wells have embedded oil and 
water production rates, while the objects representing injecting wells have embedded water injection 
rates. We represent graph relations (edges) with bidirectional transmissibility of the source cell. To pre-
process the data for machine learning, we scale the graph object attributes using “min-max” normaliza-
tion and we normalize the graph relation attributes using Box-Cox transformation. 

We train the GeoDIN framework to predict oil and water saturation dynamics in space and time. When 
benchmarked with full physics simulation, the interaction networks ran on two V100 GPUs and substan-
tially accelerated the prediction phase compared to a physics-based simulator running on 70 Intel Xeon 
E5 CPU cores. On average, the error in GeoDIN predicted spatiotemporal distribution of oil saturation 
remains within 5% of full physics simulation for 90% of the model grid cells, while the error in water 
saturation remains within 2.5% of full physics simulation. 

The spatiotemporal propagation of pressure is more sensitive to local embeddings of interaction net-
works, which communicate on node-to-node information transfer. This results in a larger prediction 
error of the GeoDIN model when benchmarked to full physics simulation. On average, the error distri-
bution suggests that a great majority (90% to 95%) of grid cells fall within 10% to 30% error bound, 
relative to the full physics simulation. 

The presented GeoDIN approach to network learning carries a game changing potential for prediction 
of subsurface flow dynamics. As the way forward, we will investigate implementation of graph neural 
networks (NN) with automated feature learning, generalization, and scale up.
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Introduction
Accurate numerical simulation of flow dynamics in subsurface reservoir systems lies at the heart of petroleum 
engineering and science. Reservoir simulation has become a standard tool for hydrocarbon reserve assessment, 
field development planning, and optimization and for strategic decision making purposes. The state-of-the-art 
simulation models of mature, real-life hydrocarbon assets can exceed hundreds of millions in grid-size, integrate 
thousands of wells and span decades of production history under various operational scenarios. Despite the wide 
expansion and deployment of massively parallelized high performance computing (HPC) clusters, novel GPU-based 
architectures and cloud computing, advanced reservoir simulation still poses extreme computational challenges 
to dynamic model calibration and optimization, long-term forecasting, and rigorous uncertainty and risk analysis.

Driven by advances in machine learning and deep learning, alternative approaches to predictive modeling and 
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simulations of complex petroleum systems’ behavior 
have been proposed in the form of physics informed, 
referred to as scientific machine learning, or SciML. 
By incorporating physical knowledge, constraints and 
conservation laws into machine learning and deep learn-
ing, one can potentially reduce the data requirements 
and dependency, significantly improve the predictive 
accuracy, statistical efficiency, interpretability and gen-
eralizability of the model, eliminate physically implau-
sible predictions from the search space and reduce the 
computational cost of models1. 

Recently, the amalgamation of data and physics gov-
erned machine learning and deep learning modeling in 
the energy and oil and gas domains has gained significant 
momentum in research and development. Zhao and 
Sarma (2018)2 introduce the data physics technology that 
combines the reservoir physics with machine learning 
and benchmark it against the conventional simulator for 
thermal recovery problems while dramatically reducing 
the computational run time. Klie et al. (2020)3 introduce 
the application of integrated transfer learning from pre-
viously learned full physics development scenarios to 
accelerate and optimize the execution of the forthcoming 
field development plan. 

Zhang et al. (2019)4 used the deep learning concepts 
combined with model reduction schemes to predict 
multiphase flow dynamics, while Jin et al. (2019)5 and 
Al-Sulaimani and Wheeler (2021)6 deploy physics-based 
reduced order modeling with Embed-to-Control frame-
work7 for multiphase surface flow simulation. Fraces et al. 
(2020)8 used physics informed neural networks (PINN) 
and apply transfer learning and generative methods to 
solve an inference problem for two-phase immiscible 
transport, while Wang et al. (2020)9, (2021)10 introduced 
the concept of the theory guided NNs to incorporate 
governing equations, boundary conditions and practical 
experience into multiphase flow prediction. 

In another approach, Thavarajah et al. (2021)11 trained 
a deep learning-based proxy model by full physics sim-
ulation output using the encoder-decoder NNs (convo-
lutional long short-term memory (LSTM)) to simulate 
fluid dynamics. While Cai et al. (2021)12 and references 
therein provide a review of PINNs for solving inverse 
problems in fluid mechanics, Fuks and Tchelepi (2020)13 
demonstrated that physics informed machine learning 
approaches fail to approximate the fluid flow dynam-
ics governed by nonlinear partial differential equations 
(PDEs) in the presence of sharp variations of saturation 
and propose the solution by adding a small amount of 
diffusion to the conservation equation. 

In our article, we approach the training of the machine 
learning and deep learning model with subsurface physics 
and solve the forward predictive problem by encoding the 
reservoir simulation model as a network graph. Network 
graphs represent a general language for describing com-
plex systems and a framework for knowledge discovery. 
Representation learning on graphs is a new concept with 
applications in biomedicine14, pharmacology and drug 
discovery15, smart mobility16 and physical reasoning and 
inference17. Recently, the applications of network graph 

modeling and learning were introduced for subsurface 
modeling and optimization18 using a hybrid artificial 
intelligence framework, and for learning to simulate 
complex physical19 and chemical processes20. 

When applied to reservoir models, graphs provide 
unique functionality for the abstraction of reservoir con-
nectivity and enable generalization from well centric to 
reservoir centric machine learning and deep learning 
applications. We leverage the concept of an interaction 
network framework21 and build the network graph with 
embedded subsurface and physics representations, and 
train the deep learning model to act like the reservoir 
simulator.

Models and Methods
Reservoir Simulation Model
We use the SPE1023 as a reference reservoir simulation 
model. The geological model represents a part of a Brent 
sequence described on a regular Cartesian grid with 
60 × 220 × 85 (1,122,000) cells. The model consists of 
two formations: a shallow marine Tarbert formation in 
the top 35 layers, where the permeability is relatively 
smooth, and a fluvial Upper-Ness permeability in the 
bottom 50 layers. Both formations are characterized by 
large permeability variations, with eight to 12 orders of 
magnitude, but are qualitatively different, Fig. 1. The 
porosity field is strongly correlated to the permeability, 
and about 2.5% of the blocks have zero porosity assigned 
as inactive.

The reservoir is produced using a water drive from a 
vertical well in the center of the reservoir with a constant 
injection rate of 5,000 stock tank barrels per day and 
produced from four vertical wells at the corners, each 
at a bottom-hole pressure of 4,000 psi. We simulated 
1,827 days of production assuming incompressible flow, 
running on 70 Intel Xeon E5 CPU cores of a highly 
parallelized HPC cluster.

Interaction Networks
The concept of modeling an interaction network was 
introduced21 to reason how objects in complex dynamic 
systems interact, to infer the abstract system properties 
and relations, and to enable dynamical predictions. The 
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Fig. 1  The SPE10 reservoir simulation model: 3D model renderings of X-permeability (left) and Z-
permeability (right) with a vertical central injector and the four corner producers, completed top to bottom.  
 
 
 

 
 
Fig. 2  A schematic of a GeoDIN model architecture. The model takes as input a graph that represents a 
system of objects, oj, in-between relations 〈𝑖𝑖, 𝑗𝑗, 𝑟𝑟!〉! and external effects, xj. It establishes the pair-wise 
interaction terms, bk, and computes their effects, ek, via a relational model, fR(·), represented by the first 
feedforward neural network (FFNN). The ek are then aggregated and combined with the oj, to generate 
input (as cj), for an object model, fO(·), with a second FFNN, which predicts how the interactions and 
dynamics influence the objects, p. 
 
 
 
 
 
 
 

Fig. 1  The SPE10 reservoir simulation model: 3D model renderings of 
X-permeability (left) and Z-permeability (right) with a vertical central injector 
and the four corner producers, completed top to bottom.
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interaction network model represents the first, general 
purpose, learnable physics engine and was evaluated with 
experiments in several challenging physical domains: 
n-body problems, rigid-body collision, and nonrigid 
dynamics. 

In the simplified example to predict the dynamics of a 
single object, one may use an object centric function, fO, 
which takes the objects’ state, ot, as the input at time, t, and 
outputs the new states of the object, ot+1, at future time, 
t+1. Moreover, if the two or more objects are governed 
by the same dynamics, fO could be applied independently 
to predict the future states of such objects.

Consequently, if several objects interact with each 
other, the fO is insufficient because it does not capture 
the inter-object relationships. For example, when the 
first object, o1, defined as the sender, influences the 
second object, o2, defined as the receiver via directed 
interaction, the interaction network model introduces a 
relation centric function, fR, to predict the effect of this 
interaction, et + 1, on the receiving object o2. The fR takes 
as input the objects o1 and o2, as well the properties of 
their relationship, r:
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et+1 = 𝑓𝑓𝑅𝑅(o1,t, o2,t, r)           (1) 
 
 
o2,t+1 = 𝑓𝑓𝑂𝑂(o2,t, et + 1)           (2) 
 
 
𝑂𝑂 = {𝑜𝑜𝑗𝑗}𝑗𝑗=1…𝑁𝑁𝑜𝑜

, 
 
𝑅𝑅 = {〈𝑖𝑖, 𝑗𝑗, 𝑟𝑟𝑘𝑘〉𝑘𝑘}𝑘𝑘=1…𝑁𝑁𝑅𝑅 
 
𝑖𝑖 ≠ 𝑗𝑗, 1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑁𝑁𝑂𝑂 
 
𝑋𝑋 = {𝑥𝑥𝑗𝑗}𝑗𝑗=1…𝑁𝑁𝑜𝑜

. 
 
 
IN(G) = ∅𝑂𝑂(𝑎𝑎(𝐺𝐺, 𝑋𝑋, ∅𝑅𝑅(𝑚𝑚(𝐺𝐺)))     (3) 
 
 
𝑚𝑚(𝐺𝐺) = 𝐵𝐵 = {𝑏𝑏𝑘𝑘}𝑘𝑘=1…𝑁𝑁𝑅𝑅   𝑎𝑎(𝐺𝐺, 𝑋𝑋, 𝐸𝐸) = 𝐶𝐶 = {𝑐𝑐𝑗𝑗}𝑗𝑗=1…𝑁𝑁𝑂𝑂

 
 
𝑓𝑓𝑅𝑅(𝑏𝑏𝑘𝑘) = 𝑒𝑒𝑘𝑘     𝑓𝑓𝑂𝑂(𝑐𝑐𝑗𝑗) = 𝑝𝑝𝑗𝑗     (4) 
 
∅𝑅𝑅(𝐵𝐵) = 𝐸𝐸 = {𝑒𝑒𝑘𝑘}𝑘𝑘=1…𝑁𝑁𝑅𝑅   ∅𝑂𝑂(𝐶𝐶) = 𝑃𝑃 = {𝑝𝑝𝑗𝑗}𝑗𝑗=1…𝑁𝑁𝑂𝑂

 
 
 
𝑚𝑚(𝐺𝐺) = [𝑂𝑂𝑇𝑇𝑅𝑅𝑅𝑅; 𝑂𝑂𝑇𝑇𝑅𝑅𝑆𝑆; 𝑅𝑅𝐼𝐼] = 𝐵𝐵   (5) 
 
 
𝑎𝑎(𝐺𝐺, 𝐸𝐸) = [𝑂𝑂𝑇𝑇; �̅�𝐸] = 𝐶𝐶  (6)  

 
 
loss = MSE (𝑓𝑓𝑂𝑂(𝑜𝑜𝑗𝑗,𝑡𝑡, 𝑒𝑒𝑘𝑘), (𝑜𝑜𝑗𝑗,𝑡𝑡+1))  (7)  
 

 1

The fO is modified so it can input both, the effect of 
interaction et+1 caused by r and the current state of the 
receiving object, o2,t, to predict the future (dynamic) state 
of the receiving object, o2,t+1:
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For larger and more complex systems, Battaglia et al. 
(2016)21 generalizes Eqn. 2 by introducing the model 
input in the form of a graph, G = ‹O, R›21. They assume 
an attributed, directed multigraph as the relations have 
attributes and there can be multiple distinct relations 
between two objects. For a system with NO objects and 
NR relations, Battaglia et al. (2016)21 defines the inputs 
to the interaction network as 
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The basic interaction network is defined as:
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The marshalling function m, rearranges the objects 
and relations into pair-wise interaction terms and com-
pute their effects, ek, via relational model, ΦR, using the 

relation centric function, fR(·). The aggregation function 
a, aggregates the ek and combines them with oj and xj, 
to generate the input for an object model, ΦO, using 
the object-centric function, fO(·). The fO(·) predicts how 
the object’s interactions, dynamics, and external effects 
influence the behavior of objects. This basic interaction 
network can predict the evolution of the states in a dy-
namic system, and for physical simulation, P may equal 
to the future (predicted) states of the objects, Ot+1. For 
further details on mathematical frameworks and nota-
tions related to interaction network modeling, refer to 
Battaglia et al. (2016)21.

Geoscience-Based Deep Interaction Networks 
(GeoDIN)

The concept of an interaction network is … agnostic to 
the choice of functions and algorithms …, for a learnable 
implementation capable of reasoning about complex 
systems with nonlinear relations and dynamics21. In our 
work, we formalize and expand the implementation to the 
domain of petroleum systems and develop Geoscience-
based Deep Interaction Networks (GeoDIN) to predict 
complex fluid-flow dynamics in reservoir simulation 
models. In Fig. 2, we partially reproduce Fig. 1 from 
Battaglia et al. (2016)21 to schematize the architecture 
of the GeoDIN with an annotated forward calculation. 
Data Abstraction: We parse the output of the simulation 
run from an in-house, full physics, massively parallelized 
reservoir simulator24. The data format of the simulation 
output is a customized format for reading and writing 
the result files from the Eclipse reservoir simulator25. We 
build a network graph with object/node and relation/
edge attributes and types, Table 1. To preprocess the data 
for machine learning, we scale the graph object attri-
butes using “min-max” normalization and we normalize 
the graph relation attributes, i.e., cell transmissibility 
(TRANS ), using Box-Cox transformation. Relation/
edge types were one-hot encoded into a vector of size 3.

In Fig. 3, we show examples of network graph rep-
resentations for the reservoir simulation grid, Nx = 3, 
Ny = 3, Nz = 1 (left), and Nx = 10, Ny = 10, Nz = 3 
(right), where graph edges are color-coded with source 
TRANS and graph nodes are color-coded with cell oil 
saturation, SOIL.

The dimensionality of the relations vector (the num-
ber of graph edges, NR) is a dynamic, simulation case 
dependent variable: as indicated in Fig. 3, the 3 × 3 × 1 
simulation grid (with only lateral grid communication via 
x- and y-transmissibility) results in a graph representation 
with 24 relations/edges. The 10 × 10 × 3 simulation grid 
on the other hand, renders 1,480 relations/edges that 
account for both, the lateral and vertical (multilayer) grid 
communication, embedded with full, 3D transmissibility 
tensor. The network graph representations of reservoir 
simulation grids become significantly more complex 
when additional abstractions of grid connectivity are 
integrated, such as sealing faults or fracture networks 
or models with unstructured grids and the presence of 
nonneighbor connections.
Implementation: We define an array of objects (O) as the 
NO × DS array. The columns correspond to the number 
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of graph objects, NO = Ngc + Npw + Niw, where Ngc, Npw, 
and Niw represent the number of simulation grid cells, 
the number of producing, and the number of injecting 
wells, respectively. The rows correspond to the objects’ 
DS length state vector and DS = DSDyn + DSStat + X. In 
the GeoDIN model, the elements of the state vector are 
categorized as:

• Dynamic state variables, DSDyn, that combine cell 
attributes such as SOIL, water saturation, SWAT, and 

reservoir pressure, PRESS, subject to a spatiotemporal 
update in each time step of the GeoDIN prediction.

• Static state variables, DSStat, that combine cell at-
tributes like porosity, POROS, and permeability, 
PERM, tensors as well as pore volume, PORVOL, 
which was used to constrain the NN while training 
with simulation data and limit error accumulation 
in predicted barrels of fluid. The object’s model was 
augmented with relative permeability to capture 

Fig. 2  A schematic of a GeoDIN model architecture. The model takes as input a graph that represents a system of objects, oj, in between relations 
‹i, j, rk›k and external effects, xj. It establishes the pair-wise interaction terms, bk, and computes their effects, ek, via a relational model, fR(·), 
represented by the first feedforward neural network (FFNN). The ek are then aggregated and combined with the oj, to generate input (as cj), 
for an object model, fO(·), with a second FFNN, which predicts how the interactions and dynamics influence the objects, p.

Object/Node 
(object state  
variables: DS )

Attribute

Oil saturation DSDyn
SOIL

Water saturation SWAT

Pressure PRESS

Pore volume PORVOL

Porosity POROS

Permeability tensor DSStat
PERM

Connate water saturation (0.2; constant) SWC

Oil-water relative permeability endpoints KRW, KROW

Oil Production Rate (Producer) WOPR

Water Production Rate (Producer) X WWPR

Water Injection Rate (Injector) WWIR

Relation/Edge
(relation variables: DR )

Attribute
Transmissibility tensor of source cell TRANS

Well completion factor CF

Type

Simulation Grid Cells DIFFUSE

Producing Wells PRODUCE

Injecting Wells INJECT

Table 1  Features and encodings of a GeoDIN graph.

Network graph
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correct two-phase flow dynamics and note-to-node 
information transfer of spatiotemporal fluid propa-
gation in the training phase. Encoding the relative 
permeability parameters, i.e., connate water satura-
tion, SWC, and oil-water endpoints, KRW, KROW, 
as a Corey function, Fig. 4, instead in its tabular 
form, accelerates the deep NN training.

• Operational state variables, X, that combine well 
attributes such as the oil production rate, WOPR, 
and water production rate, WWPR, for producers and 
water injection rate, WWIR, for injectors, encoded 
as control variables, representing well operational 
constraints per each time step.

The relations (R) are represented as a triplet R = ‹RR , 
RS , RI›, where:

• RR and RS are NO × Ng arrays, which index the receiver 
and sender objects, respectively.

• RI represents the DR × NR array where DR sums 
over the number or relation attributes and types. 
In GeoDIN, we encode two relation types: bidirec-
tional TRANS and well completion factor, CF. Both, 
the TRANS and CF are continuous variables. The 
relation type is one-hot encoded into a vector of size 
3 with categorical representation of how interacting 
objects in the triplet R exchange the information 
(DIFFUSE for grid cell-to-cell communication and 
PRODUCE/INJECT for well-to-cell communication), 
which makes DR a vector of size 5. In the GeoDIN 
experiments, where all the wells were top-to-bottom 
vertical wells, the corresponding well CFs are set to 
CF = 1. The generalization of the GeoDIN model 
to incorporate, e.g., slanted wells, would encode CF 
≠ 1 values.

The j-th columns of the RR and RS arrays represent 
one-hot encoding vectors that indicate the receiver and 

sender object’s indices, respectively.
The m computes21 the matrix products OTRR (dim(OTRR) 

= DS × NR) and OTRS (dim(OTRS) = DS × NR) and con-
catenates them vertically with RI:
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The resulting B is a (2DS + DR) × NR array, whose 
columns represent the interaction terms bk for the NR 
relations or edges in graph G. As indicated in Fig. 2, 
in GeoDIN implementation the X are encoded as well 
object attributes into m.

B represents an input to ΦR, which applies fR(·), a NN, 
to each array column. In such manner, the ΦR predicts 
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Table 1  Features and encodings of a GeoDIN graph. 
 
 
 

 
 
Fig. 3  The network graph representations for the reservoir simulation grid (3 × 3 × 1; left) and (10 × 10 × 
3; right). 
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Fig. 4  The encoded relative permeability function used to augment the GeoDIN object’s model. 
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Fig. 4  The encoded relative permeability function used to augment the GeoDIN 
object’s model.
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the effect of each interaction ek by applying fR(·) to each bk. 
The output of fR(·) is a DE length effect vector, ek, which 
represents an embedded distribution of calculated effects 
on objects (O). The role of ΦR is to concatenate the NR 
effects to form the DE × NR effect array, E.

G and E are input to aggregation function a, which 
computes the DE × NO matrix product, Ē = ERT

R, whose 
j-th column equals to element-wise summation over all 
ek whose corresponding relation has a receiver object, oj.
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The resulting C is a (DSDyn + DE) × NO array whose NO 
columns are the object states and per object aggregated 
interaction effects. 

To clarify, the GeoDIN model is applied to solve a 
forward problem, to predict the evolution of dynamic 
state variables, i.e., the future t+1 states of SOIL, and 
SWAT, and PRESS, while the state updates are not ap-
plied to DSStat. Should the application of GeoDIN be 
reformulated to solve the inverse problem, e.g., static 
model reconciliation with dynamic data, referred to as 
history matching, then the array C of the aggregated 
interaction effects would combine both, DSDyn and DSStat.

C is input to ΦO, which applies fO(·), another NN, to each 
NO column. The output of fO(·) is a DP length vector, pj, and 
ΦO concatenates them to form the output array P (dim(P ) 
= 3 × NO) of which components are predicted vectors 
of SOIL, SWAT, and PRESS per simulated time step.

We train the GeoDIN using multiple hidden layers with 
various numbers of neurons, gated by the ReLU activation 
function and optimized with a stochastic gradient-based 
optimizer (ADAM)26. The GeoDIN is comprised of two 
FFNNs: the first FFNN, the ΦR, calculates the ek, and 
the second FFNN, the object model, learns to apply this 
ek on the oj. During training, the objective is to minimize 
the loss of the object model, defined as a mean square 
error (MSE) between the model’s prediction and the 
full physics simulation, per simulation time step, across 
all the objects:
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At this point it is worth clarifying that GeoDIN does not 
incorporate an explicit time integration as perceived for 
and implemented in the PINN frameworks8. In GeoDIN, 
the flow physics is captured from simulation models by 
learning object-to-object interaction terms and computing 
their effects to predict the next object states. As such, 
the GeoDIN loss function only incorporates data-driven 
terms. In PINNs, however, the flow physics is emulated, 
and loss function combines the terms for solving flow 
governing PDEs, the terms with associated initial and 
boundary conditions as well as data-driven terms. In 
Maucec and Jalali (2021)27 we further demonstrate the 
assembly of the O and R arrays with implementation on 
a simplified example of 3 × 3 × 1 simulation grid with a 
corner injector and producer.
Experiments: We use the data for 800 days out of 1,827 
days of simulated production for training. The FFNN was 
trained for 500 epochs. Figure 5 shows the convergence 

of model loss function and the convergence of the mean 
cell error as a contribution from the individual predicted 
response terms, SOIL, SWAT, and PRESS. 

In Table 2 we list the GeoDIN model training time, for 
models presented in Fig. 6. The timing values correspond 
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Fig. 5  The training error convergence of the GeoDIN model: (a) the model loss as MSE between the 
model’s prediction and the full physics simulation, and (b) contribution of individual predicted response 
terms, SOIL, SWAT, and PRESS, to the cell mean error. 
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Fig. 5  The training error convergence of the GeoDIN model: (a) the model loss as 
MSE between the model’s prediction and the full physics simulation, and (b) 
contribution of individual predicted response terms, SOIL, SWAT, and PRESS, 
to the cell mean error.

No. of Layers Training (min)

3 4.4

5 3.3

10 7.7

20 15.4

40 30.3

80 N/A

Table 2  The GeoDIN model training time for models 
presented in Fig. 6.
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to the use of a single GPU for all the models. The 80-layer 
model was not used for training to avoid memory alloca-
tion problems. Note that the training time values, as listed 
do not correspond to run time. They are only reported 
for evaluation purposes, but not used for prediction. 

The prediction performance of the GeoDIN model 
was benchmarked against the full physics simulation 
run. The full physics simulation runs were performed 
on 70 Intel Xeon E5 CPU cores. The prediction period 
was 1,827 days. In Fig. 6, we show the run time perfor-
mance as a function of the model size, by increasing the 
number of vertical layers from 3, 5, 10, 20, and 40, to 80. 
For the model sizes with a number of layers up to 40, a 
single V100 GPU was used to run the GeoDIN model 
predictions, for the model with 80 vertical layers, two 
GPUs were used to meet the memory requirements. 
Herewith, the run time corresponds to the rollout of 
1,827 daily time steps in prediction mode.

While the predictive run time performance of full phys-
ics and GeoDIN model is comparable for the smallest 
model size (after discounting for the difference in hard-
ware), the later model demonstrates significantly faster 
prediction for larger size models. In particular, when 
using the two GPUs vs. 70 CPUs, the GeoDIN prediction 
is almost five times faster. 

In Fig. 7 we compare the number of relations (graph 
edges in the GeoDIN model) and the size of underlying 
simulation grid model as a function of the number of K-
layers in the represented SPE10 model. The annotated 
trendlines indicate a linear dependence on the number 
of K-layers for both, the simulation grid size and the 
number of graph relationships. Consequently, the size 
of the graph increases approximately six times faster 
than the size of the grid. In practical terms, this suggests 
that with model scale up, the expansion of the network 
graph, as a representation of the reservoir simulation 
grid, potentially poses a challenge for interaction network 
training, due to the GPU memory limitations.

We have performed three prediction experiments with 
GeoDIN while benchmarking against a full physics res-
ervoir simulator. It is important to note that the same 
full physics simulation model with three top layers from 
the upper shallow marine formation, was used to train 
all three GeoDIN predictive models. 

1. Experiment 1: Perform prediction of spatiotem-
poral dynamics of SOIL, SWAT, and PRESS in the 
same three model layers as used for training. SOIL 
and SWAT were predicted independently and not 
constrained by the mass conservation equation for 
two-phase flow, i.e., SOIL + SWAT = 1. We have 
considered such an approach to investigate the pre-
dictive capability of the GeoDIN framework when 
generalized to three-phase gas/oil/water systems. The 
derivation of a gaseous component from three-phase 
mass conservation equation as SGAS = 1 – SOIL – 
SWAT, requires the independent prediction of oil and 
water components. 

2. Experiment 2: Do not retrain the GeoDIN model, 
relocate the water injector to a different position in the 

simulation grid (Fig. 8; top row) and perform predic-
tion of spatiotemporal dynamics of SOIL, SWAT, and 
PRESS in the same three-layer model. The objective 
of this experiment was to investigate how accurately 
the GeoDIN model can capture spatiotemporal flow 
dynamics with perturbed injector location, mimicking 
a stage of simplified infill drilling plan. 

3. Experiment 3: As previously outlined, the SPE10 
reservoir model under study consists of two distinc-
tive formations, where in the top 35 shallow marine 
layers the permeability is relatively smooth, while in 
the bottom 50 layers follows a fluvial channel spatial 
distribution (Fig. 8; bottom row). Both formations are 
characterized by large permeability variations between 
eight to 12 orders or magnitude. The objectives of this 
experiment were to:
• Learn the representative fluid flow dynamics in 
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Fig. 6  The run time performance of the GeoDIN model (orange) against the full physics simulation model 
(blue) as a function of the model size for the rollout of 1,827 daily time steps in prediction mode. 
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Fig. 7  The number of relations (graph edges in GeoDIN model; orange) and grid cells in the underlying 
full physics simulation model (blue) vs. number of K-layers.  
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shallow marine subsurface depositions and predict 
the spatiotemporal flow dynamics in the 85-layer 
model.

• Compare GeoDIN predicted spatiotemporal flow 
dynamics in a layer, selected from the bottom for-
mation with the full physics simulation model. 

The SPE10 simulation grid contains approximately 
2.5% of inactive cells. In the simulation model, the 
inactive cells are assigned zero porosity and are not 
considered in flow calculations with full physics PDE 
solvers. In GeoDIN, we remove inactive cells from the 
graph, i.e., we ignore inactive cells when we convert 
the simulation model grid to a graph. Subsequently, 
we maintain one-on-one correspondence or mapping 
between the simulation grid and the generated graph 
by preserving the exact spatial location of inactive cells 
when the graph is converted back to the grid. In visual-
ization of pressure and saturation maps, the inactive cells 
appear as dark-color clusters or ghost regions of points, 
Fig. 8. The same correspondence applies to pressure and 
saturation maps, previously noted. 

Results
Experiment 1: Prediction of Fluid Flow Dynamics in 
Three-Layer Model

Figures 9 to 11 provide a comparison between the 
GeoDIN prediction and full physics simulation for the 
SOIL, SWAT, and PRESS, respectively. We visualize 
the property maps for a selected layer (K = 2) of the 

three-layer simulation model. The represented fluid flow 
dynamics corresponds to a centrally located injector. 

The presentation format is as follows:
• The top panel shows the snapshots of dynamic flow 

property predicted with the GeoDIN model at four 
time steps: 3 days, 500 days, 1,000 days, and 1,600 
days.

• The central panel shows the snapshots of dynamic 
flow property predicted with a full physics simulator 
at the same time steps.

• The bottom panel shows the spatial map of a loga-
rithm (for visualization purposes) square error per 
cell between the GeoDIN predicted and full physics 
simulated dynamic flow property at the same time 
steps.

• The unified color scales used are green for oil, blue for 
water, magenta for pressure, and red for square error.

Figure 12 outlines the boxplots of per cell error distri-
bution for the GeoDIN prediction relative to full physics 
simulation for SOIL, SWAT, and PRESS, respectively, 
as a function of the simulation/prediction time step. 
The statistical error analysis corresponding to the final 
time step — end of simulation/prediction — indicates 
that the mean absolute error in SOIL is approximately 
2%. The error distribution suggests that 50% of grid 
cells fall within a 4% error bound, while 90% of the 
grid cells fall within a 5% error bound. For SWAT, the 
mean absolute error is approximately 0.5%. The er-
ror distribution suggests that 50% of the grid cells fall 
within a 1.5% error bound, while 90% of the grid cells 
fall within a 2.5% error bound. For the PRESS, while 
the mean absolute error is approximately 5%, the error 
distribution suggests that 90% of grid cells fall within a 
20% error bound, indicating that the GeoDIN model 
prediction overestimates the simulated pressure.

The spatiotemporal propagation of pressure is more 
sensitive to local embeddings of interaction networks, 
which communicate on node-to-node information trans-
fer. The representation of reservoir pressure dynamics 
in the SPE10 model is governed by initial pore fluid 
distribution. This characterizes pressure as a global phys-
ics property, establishing several orders of magnitude 
faster than the fluid convection speed11. The external 
pressure support comes in the form of a single water 
injector, and in training, the GeoDIN framework fails to 
capture meaningful small variability in induced pressure 
dynamics, which results in a larger prediction error when 
benchmarked with full physics simulation.

Experiment 2: Prediction of Fluid Flow Dynamics in 
Three-Layer Model with Relocated Water Injector

Figures 13 to 15 provide a comparison between the 
GeoDIN prediction conducted in Experiment 2, and 
full physics simulation for SOIL, SWAT, and PRESS, 
respectively. We visualize the property maps for a se-
lected layer (K = 2) of the three-layer simulation model. 
The represented fluid flow dynamics corresponds to a 
relocated water injector, as previously discussed.

Figure 16 outlines the boxplots of per cell error distri-
bution for the GeoDIN prediction relative to full physics 
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Fig. 8  The visualization of information complimentary to a specific GeoDIN prediction experiment: 
relocation of the water injector in the simulation grid in Experiment 2 (top) and visualization of X-
permeability in distinctive formations, corresponding to top shallow marine formation and bottom fluvial 
channel formation in Experiment 3 (bottom). In the top panel, the appearance of dark-colored clusters of 
points, corresponding to inactive cells is marked for clarification. 
 

 
 
Fig. 9  A comparison of SOIL maps between the GeoDIN prediction and full physics simulation for a 
selected layer (K = 2) of the three-layer simulation model (Experiment 1) over time. The dark-colored 
clusters of points correspond to inactive cells.  
 

Fig. 8  The visualization of information complimentary to a 
specific GeoDIN prediction experiment: relocation 
of the water injector in the simulation grid in 
Experiment 2 (top) and visualization of X-permeability 
in distinctive formations, corresponding to top 
shallow marine formation and bottom fluvial channel 
formation in Experiment 3 (bottom). In the top 
panel, the appearance of dark-colored clusters of 
points, corresponding to inactive cells is marked for 
clarification.
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Fig. 9  A comparison of SOIL maps between the GeoDIN prediction and full physics simulation for a selected layer (K = 2) of the three-layer 
simulation model (Experiment 1) over time. The dark-colored clusters of points correspond to inactive cells.
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Fig. 9  A comparison of SOIL maps between the GeoDIN prediction and full physics simulation for a 
selected layer (K = 2) of the three-layer simulation model (Experiment 1) over time. The dark-colored 
clusters of points correspond to inactive cells.  
 

Fig. 10  A comparison of SWAT maps between the GeoDIN prediction and full physics simulation for a selected layer (K = 2) of the three-layer 
simulation model (Experiment 1) over time. The dark-colored clusters of points correspond to inactive cells.
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Fig. 10  A comparison of SWAT maps between the GeoDIN prediction and full physics simulation for a 
selected layer (K = 2) of the three-layer simulation model (Experiment 1) over time. The dark-colored 
clusters of points correspond to inactive cells. 
 
 
 
 

 
 
Fig. 11  A comparison of normalized PRESS maps between the GeoDIN prediction and full physics 
simulation for a selected layer (K = 2) of the three-layer simulation model (Experiment 1) over time. The 
dark-colored clusters of points correspond to inactive cells. 
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Fig. 11  A comparison of normalized PRESS maps between the GeoDIN prediction and full physics simulation for a selected layer (K = 2) of the three-
layer simulation model (Experiment 1) over time. The dark-colored clusters of points correspond to inactive cells.
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Fig. 10  A comparison of SWAT maps between the GeoDIN prediction and full physics simulation for a 
selected layer (K = 2) of the three-layer simulation model (Experiment 1) over time. The dark-colored 
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Fig. 11  A comparison of normalized PRESS maps between the GeoDIN prediction and full physics 
simulation for a selected layer (K = 2) of the three-layer simulation model (Experiment 1) over time. The 
dark-colored clusters of points correspond to inactive cells. 
 
 

Fig. 12  The per cell error distribution for the GeoDIN prediction relative to full physics simulation for SOIL, SWAT, and PRESS, respectively, in a three-
layer simulation model (Experiment 1), over time.
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Fig. 12  The per cell error distribution for the GeoDIN prediction relative to full physics simulation for SOIL, 
SWAT, and PRESS, respectively, in a three-layer simulation model (Experiment 1), over time. 
 

 
 
Fig. 13  A comparison of SOIL maps between the GeoDIN prediction and full physics simulation for a 
selected layer (K = 2) of the three-layer simulation model with relocated injector (Experiment 2), over 
time. The dark-colored clusters of points correspond to inactive cells. 
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Fig. 13  A comparison of SOIL maps between the GeoDIN prediction and full physics simulation for a selected layer (K = 2) of the three-layer 
simulation model with relocated injector (Experiment 2), over time. The dark-colored clusters of points correspond to inactive cells.
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Fig. 12  The per cell error distribution for the GeoDIN prediction relative to full physics simulation for SOIL, 
SWAT, and PRESS, respectively, in a three-layer simulation model (Experiment 1), over time. 
 

 
 
Fig. 13  A comparison of SOIL maps between the GeoDIN prediction and full physics simulation for a 
selected layer (K = 2) of the three-layer simulation model with relocated injector (Experiment 2), over 
time. The dark-colored clusters of points correspond to inactive cells. 
 
 
 
 

Fig. 14  A comparison of SWAT maps between the GeoDIN prediction and full physics simulation for a selected layer (K = 2) of the three-layer 
simulation model with relocated injector (Experiment 2), over time. The dark-colored clusters of points correspond to inactive cells.
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Fig. 14  A comparison of SWAT maps between the GeoDIN prediction and full physics simulation for a 
selected layer (K = 2) of the three-layer simulation model with relocated injector (Experiment 2), over 
time. The dark-colored clusters of points correspond to inactive cells. 
 
 
 

 
 
Fig. 15  A comparison of PRESS maps between the GeoDIN prediction and full physics simulation for a 
selected layer (K = 2) of the three-layer simulation model with relocated injector (Experiment 2), over 
time. The dark-colored clusters of points correspond to inactive cells. 
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Fig. 15  A comparison of PRESS maps between the GeoDIN prediction and full physics simulation for a selected layer (K = 2) of the three-layer 
simulation model with relocated injector (Experiment 2), over time. The dark-colored clusters of points correspond to inactive cells.
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Fig. 14  A comparison of SWAT maps between the GeoDIN prediction and full physics simulation for a 
selected layer (K = 2) of the three-layer simulation model with relocated injector (Experiment 2), over 
time. The dark-colored clusters of points correspond to inactive cells. 
 
 
 

 
 
Fig. 15  A comparison of PRESS maps between the GeoDIN prediction and full physics simulation for a 
selected layer (K = 2) of the three-layer simulation model with relocated injector (Experiment 2), over 
time. The dark-colored clusters of points correspond to inactive cells. 
 
 
 

Fig. 16  The per cell error distribution for the GeoDIN prediction relative to full physics simulation for SOIL, SWAT, and PRESS, respectively, in a three-
layer simulation model with relocated injector (Experiment 2), over time.
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Fig. 16  The per cell error distribution for the GeoDIN prediction relative to full physics simulation for SOIL, 
SWAT, and PRESS, respectively, in a three-layer simulation model with relocated injector (Experiment 2), 
over time. 
 
 
 
 

 
 
Fig. 17  A comparison of SOIL maps between the GeoDIN prediction and full physics simulation for a 
selected layer (K = 55) of the 85-layer simulation model (Experiment 3), over time. The dark-colored 
clusters of points correspond to inactive cells. 
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Fig. 17  A comparison of SOIL maps between the GeoDIN prediction and full physics simulation for a selected layer (K = 55) of the 85-layer 
simulation model (Experiment 3), over time. The dark-colored clusters of points correspond to inactive cells.
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Fig. 16  The per cell error distribution for the GeoDIN prediction relative to full physics simulation for SOIL, 
SWAT, and PRESS, respectively, in a three-layer simulation model with relocated injector (Experiment 2), 
over time. 
 
 
 
 

 
 
Fig. 17  A comparison of SOIL maps between the GeoDIN prediction and full physics simulation for a 
selected layer (K = 55) of the 85-layer simulation model (Experiment 3), over time. The dark-colored 
clusters of points correspond to inactive cells. 
 
 
 
 
 

Fig. 18  A comparison of SWAT maps between the GeoDIN prediction and full physics simulation for a selected layer (K = 55) of the 85-layer 
simulation model (Experiment 3), over time. The dark-colored clusters of points correspond to inactive cells.
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Fig. 18  A comparison of SWAT maps between the GeoDIN prediction and full physics simulation for a 
selected layer (K = 55) of the 85-layer simulation model (Experiment 3), over time. The dark-colored 
clusters of points correspond to inactive cells.  
 
 
 

 
 
Fig. 19  A comparison of PRESS maps between the GeoDIN prediction and full physics simulation for a 
selected layer (K = 55) of the 85-layer simulation model (Experiment 3), over time. The dark-colored 
clusters of points correspond to inactive cells. 
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simulation for SOIL, SWAT, and PRESS, respectively, 
as a function of simulation/prediction time step. The 
statistical error analysis corresponding to the final time 
step — end of simulation/prediction — indicates the 
mean absolute error in SOIL is approximately 2%. The 
error distribution suggests that 50% of the grid cells fall 
within a 3% error bound, while 90% of the grid cells 
fall within a 4.5% error bound. For SWAT, the mean 
absolute error is approximately 0.5%. The error distri-
bution suggests that 50% of the grid cells fall within a 
1% error bound, while 90% of the grid cells fall within 
a 2.5% error bound. For PRESS, the mean absolute 
error is approximately 23%, while the error distribution 
suggests that 90% of the grid cells fall within a 10% to 
30% error bound, indicating that the GeoDIN model 
prediction overestimates the simulated reservoir pressure. 
The physical reasoning behind the phenomenon refers 
to the explanation previously discussed. 

Experiment 3: Prediction of Fluid Flow Dynamics in 
Distinctively Different Formation of 85-Layer Model

In experiment 3, the GeoDIN model was trained with 
the three-layer full physics simulation model of the 
upper formation and learned the representative fluid 
flow dynamics in the upper shallow marine subsurface 
depositions. The model was then used to predict the 
spatiotemporal flow dynamics in the 85-layer model. 
We visualize the fluid distribution maps in a selected 
layer (K = 55) corresponding to the lower fluvial channel 

formation of the 85-layer simulation model. Figures 17 to 
19, respectively, correspond to SOIL, SWAT, and PRESS. 

The results demonstrate the ability of the GeoDIN 
model to learn the fluid dynamics from the three-layer 
model and accurately generalize the interaction effects 
on a larger — 85-layer — simulation grid model with 
distinctively different distribution of matrix permeability, 
spatially, and by magnitude. We augment the outcome by 
interpreting Fig. 20, which shows the results of TRANS 
normalization for data points corresponding to active 
cells, using Box-Cox transformation. The upper row 
corresponds to the transmissibility from three-layer 
simulation model used for GeoDIN training, while the 
bottom row corresponds to transmissibility of the 85-layer 
model used for prediction. 

The TRANS, extracted from the full physics simulation 
output, is severely right-skewed and resembles power law 
distribution with extreme values reaching up to 600,000. 
The transformation of the TRANS into a distribution that 
resembles normality is essential because in general, for 
the NNs, the learning from highly imbalanced data with 
power-law-like distributions can be quite challenging. 
Moreover, since transmissibility represents the main 
relation/edge attribute in the network graph model that 
controls cell-to-cell communication via diffusivity, the 
outlier removal is not recommended.

It is interesting to observe that the Box-Cox transfor-
mation of model transmissibility renders a multimodal 

Fig. 19  A comparison of PRESS maps between the GeoDIN prediction and full physics simulation for a selected layer (K = 55) of the 85-layer 
simulation model (Experiment 3), over time. The dark-colored clusters of points correspond to inactive cells.
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Fig. 18  A comparison of SWAT maps between the GeoDIN prediction and full physics simulation for a 
selected layer (K = 55) of the 85-layer simulation model (Experiment 3), over time. The dark-colored 
clusters of points correspond to inactive cells.  
 
 
 

 
 
Fig. 19  A comparison of PRESS maps between the GeoDIN prediction and full physics simulation for a 
selected layer (K = 55) of the 85-layer simulation model (Experiment 3), over time. The dark-colored 
clusters of points correspond to inactive cells. 
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distribution for the 85-layer model, which clearly indi-
cates the presence of distinctive formations as well as 
flow units in a subsurface model. Moreover, as shown by 
the boxplots in the right column of Fig. 20, the shapes 
of transformed density distributions of three-layer and 
85-layer models are statistically sufficiently similar for 
GeoDIN to learn spatial fluid dynamics in the three-lay-
er model and accurately predict in the 85-layer model. 

Figure 21 outlines the boxplots of per cell error distri-
bution for the GeoDIN prediction relative to full physics 
simulation for the SOIL, SWAT, and PRESS, respectively, 
as a function of simulation/prediction time step. The 
statistical error analysis corresponding to the final time 
step — end of simulation/prediction — indicates the 
mean absolute error in SOIL is approximately 2%. The 
error distribution suggests that 50% of the grid cells fall 
within a 3.8% error bound, while 90% of the grid cells 
fall within a 4.5% error bound. For the SWAT, the mean 
absolute error is approximately 0.5%. The error distri-
bution suggests that 50% of the grid cells fall within a 
1.5% error bound, while 90% of the grid cells fall within 
a 2.5% error bound. For PRESS, the mean absolute 
error is approximately 8%, while the error distribution 
suggests that 95% of the grid cells fall within a 20% error 
bound, indicating that the GeoDIN model prediction 
underestimates the simulated reservoir pressure. The 
physical reasoning behind the phenomenon refers to the 
explanation previously discussed.

Discussion
We introduced the GeoDIN framework that learns 
complex representations of subsurface from reservoir 
simulation models and predicts 3D flow dynamics. We 
conducted various experiments and demonstrated that, on 
average, the error in GeoDIN predicted spatiotemporal 
distribution of SOIL remains within 5% of full physics 
simulation for 90% of the model grid cells, while the 
error in SWAT remains within 2.5% of the full physics 
simulation. 

Subsequently, with its current architecture, the GeoDIN 
cannot accurately predict the well production rates for 
oil and water. The GeoDIN is based on the concept of 
interaction networks21, initially developed and validated 
for tasks of physical reasoning such as predicting potential 
energy of n-body systems, where n interacting objects 
are of the same type and result in n(n-1) relations to learn 
meaningful interactions caused by exerting distance and 
mass dependent forces on each other. 

As previously described, the GeoDIN graph repre-
sentation of the reservoir simulation model embodies 
two types of objects (nodes): grid cells and wells. The 
dominant interaction dynamics occurs at cell-to-cell 
level and the three-layer model, used in our training 
experiments, renders almost 200,000 relations (graph 
edges in the GeoDIN model) to accurately learn mean-
ingful cell-to-cell flow dynamics by interaction networks. 

In GeoDIN, CFs are used to one-hot encode wells 

Fig. 20  Results of transmissibility normalization for data points corresponding to active cells, using Box-Cox transformation.
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Fig. 20  Results of transmissibility normalization for data points corresponding to active cells, using Box-
Cox transformation.  
 
 

 
 
Fig. 21  The per cell error distribution for the GeoDIN prediction relative to full physics simulation for SOIL, 
SWAT, and PRESS, respectively, in the 85-layer simulation model (Experiment 3), over time. 
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into a network graph. In the three-layer model, used 
for training, encoding five wells (one injector and four 
producers), completed top-to-bottom results in 15 well-
to-cell relations. This is orders of magnitude lower than 
the number of cell-to-cell relations and insufficient for 
interaction networks to learn meaningful well-to-cell 
dynamics and accurately predict well rates. Alternative 
approaches can be investigated to improve the prediction 
of well rates in GeoDIN models: (a) predict flow saturation 
within drainage regions of perforated/completed well cells 
with interaction networks (expansion to drainage regions 
will increase the number of corresponding well-to-cell 
relations) and use separate machine learning models 
such as multilayer perception, LSTM, or recurrent NN 
to predict well rates as time series, and (b) modify the 
loss function to penalize for the well-to-cell interactions 
in prediction of well rates. 

Conclusions
GeoDIN is a novel proof-of-concept technology with 
applications to graph learning from reservoir simula-
tion models that carries a game changing potential for 
rapid prediction of subsurface flow dynamics. For SOIL 
and SWAT, the GeoDIN model prediction generalizes 
efficiently to capture the interaction effects on a larger 
simulation grid model with distinctively different distri-
bution of subsurface properties, spatially, and by mag-
nitude (Experiment 3). Furthermore, a high degree of 
generalization has been achieved to account for variable 
(injector) well locations (Experiment 2). In addition, we 
demonstrate a significant prediction speed up of the 
GeoDIN model with respect to full physics simulation 
reaching almost fivefold acceleration for the largest model 
simulated, with reduced hardware requirements (two 

GPUs vs. 70 CPUs). 
When training the GeoDIN model, the GPU memory 

allocation may become challenging with model scale up. 
In our experiments with the SPE10 model, the number 
of graph edges increases almost six times faster than 
the number of cells in the underlying simulation grid. 
The graph size may expand at even higher rates when 
distinctive features that govern reservoir connectivity, 
e.g., fractures, faults, and high flow units, are encoded. 
One recommendation would be to utilize the distributed 
deep learning training framework (Horovod) and leverage 
state-of-the-art hardware, such as GPU clusters with 
sufficient memory to perform the training at scale. It is 
also suggested to build on the learnings from Box-Cox 
data transformation and perform a rigorous sensitivity 
and ranking analysis, jointly for network graph object and 
relation attributes, and with variable well positioning to 
evaluate their distinctive impact on learning cell-to-cell 
flow diffusivity. 

When compared to fluid dynamics, the reservoir 
pressure is characterized as the global model property, 
established several orders of magnitude faster than the 
fluid convection speed. In interaction networks, which 
communicate by node-to-node information transfer, the 
spatiotemporal propagation of pressure is more sensitive 
to local embeddings, which makes the learning of repre-
sentative pressure dynamics significantly more challeng-
ing. The GeoDIN model is unable to accurately capture 
meaningful pressure dynamics induced by a single water 
injector, which results in a larger prediction error when 
benchmarked with reservoir simulation. 

On average, over the three conducted experiments, the 
error distribution suggests that a great majority (90% to 

Fig. 21  The per cell error distribution for the GeoDIN prediction relative to full physics simulation for SOIL, SWAT, and PRESS, respectively, in the 
85-layer simulation model (Experiment 3), over time.
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95%) of grid cells fall within 10% to 30% error bound rel-
ative to full physics simulation. The ability of GeoDIN to 
predict spatial pressure dynamics more accurately could 
improve if the model is trained with a variable number 
and use locations of injectors as well as variable injection 
rates. We may conduct such experiments in the future. 

As the way forward, we are currently investigating 
the application of the state-of-the-art NN architectures, 
such as graph NNs with advanced feature encoding and 
augmentation to improve training with clustered and 
sectorized data, learn highly similar graph structures and 
embeddings, propagate information across graphs with 
automated feature learning, and to conserve fluid volumes 
over long prediction times. Ultimately, our objective is 
to generalize and scale up the GeoDIN architectures by 
training with reservoir properties under uncertainty, a 
variety of scenarios of distinctive reservoir connectivity 
(faulted and fractured models), complex structure and 
gridding, e.g., unstructured and locally refined grids, 
and with modeling different recovery drive mechanisms, 
improved oil recovery strategies, and well placement 
and production constraints.
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Cross-borehole ground penetrating radar (XBGPR) is a geophysical technique that allows for high-res-
olution characterization of the interwell region. This method relies on the propagation of electromagnet-
ic (EM) waves — typically in the MHz region — that are analyzed to generate subsurface maps of EM 
properties, which can be interpreted into fluid saturation maps. We present the results of a large-scale 
field experiment complemented by 3D numerical simulations evaluating the feasibility of locating small 
fluid targets of different compositions in the subsurface. 

An array of 33 target wells and six observation wells completed with nonconductive, nonmagnetic pipe 
were used to conduct the experiments. The target wells were filled with different fluids, including dielec-
trically and magnetically tagged fluids, such as polymer solutions and polymer solutions with magnetite. 
Time-domain EM measurements were acquired using a 100 MHz XBGPR system in a semi-reciprocal 
tomographic setup. The acquired waveforms were filtered and processed using bh_tomo, an open source 
platform for XBGPR analysis. Traveltime and amplitude inversions were performed to obtain velocity 
and attenuation maps of the surveyed area. In parallel, 3D numerical simulations were conducted using 
a commercially available finite element modeling package. The simulation results were compared and 
validated with the experimental results. 

The simulations are in overall agreement with the field results; showing the right trend in traveltime 
and amplitude for the different fluids. All fluids caused an increase in traveltime compared to air filled 
target wells. Water appears to cause the largest increase, followed by AN-132, xanthan, and finally xanthan 
with magnetite. The observed traveltime is lower than expected. This may be an indication of the wave 
going around the holes and partially avoiding the slow fluids, especially because the operating wavelength 
is comparable to the well spacing. 

Another possible explanation is that the actual location of the wells is slightly different from the origi-
nal design due to inaccurate drilling. Yet another possibility is that the array may behave as a periodic 
structure, causing modal propagation. The attenuation data shows a clear difference between the empty 
and the liquid filled target holes, but little difference between the liquids. As a whole, the results prove 
that our approach can be used to locate relatively small fluid targets via EM tomographic surveys with 
no previous geological information.

Experimental data of XBGPR is rather limited. Our experiments expand the understanding of the 
challenges and opportunities that such a technique can offer to the oil and gas industry. We have also 
developed and validated modeling capabilities that will enable improved planning and quick testing of 
future surveys.

Imaging Subsurface Targets Using Cross-Borehole 
GPR: A Field and Modeling Approach
Jesus M. Felix Servin and Hussain A. Shateeb

Abstract  /

Introduction
Ground penetrating radar (GPR) is a geophysical technique that allows for high-resolution characterization of 
the subsurface. GPR uses electromagnetic (EM) propagating waves to probe the subsurface and detect structures 
and changes in electrical properties via reflection and/or transmission measurements. Comprehensive descrip-
tions of the technique and its applications can be found in the literature1, 2. GPR has been used in several fields, 
such as glacial exploration and monitoring3, 4, aquifer characterization5, utility detection6, 7, mining8, 9, and voids 
detection10, among others.

Signal penetration depends on the operating frequency and propagating media properties, and ranges widely 
from less than 1 m for clay, to several thousands of meters for ice11. Deep investigation is only possible in highly 
resistive materials and at low operating frequencies (tens of MHz). 

GPR surveys can be divided into surface and borehole, depending on the acquisition configuration, and trans-
mission, Fig. 1. Borehole GPR surveys are conducted in reflection mode when only one borehole is available and 
both the transmitter (Tx) and the receiver (Rx) are sequentially positioned at multiple locations along the same 
borehole. The reflections, caused by changes in the EM properties of the subsurface, are recorded. When two or 
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more boreholes are available, the survey can be conduct-
ed in transmission mode, also known as cross-borehole 
GPR (XBGPR). 

Our work focuses on XBGPR, in which an EM signal 
is launched into the medium of interest by a Tx antenna 
located inside a borehole and the signal is recorded a 
certain distance away by an Rx antenna located inside a 
second borehole. Conventionally, the traveltime and first 
cycle amplitude of the recorded waveforms are picked, 
Fig. 2, and inverted, to obtain velocity and attenuation 
maps of the subsurface that can be further interpreted 
to obtain distribution maps of dielectric permittivity, 
ɛ, magnetic permeability, µ, and electric conductivity, 
σ. More sophisticated techniques to infer subsurface 
properties from the received waveforms, such as full 
waveform inversion, have also been explored and show 
promising results5, 12-15. 

The operating frequency of most borehole GPR systems 
is between 20 MHz to 250 MHz, with corresponding 
wavelengths of 5 m to 0.4 m for common geological 
materials13, 16, 17. Similar to surface GPR, the penetration 
depth ranges from less than a meter in clay, to tens 
of meters in crystalline rock, and thousands of meters 
in salt11. XBGPR is less common than surface GPR. 
Nevertheless, this technique has been implemented in 
multiple areas, such as mining9, cavity imaging17, fracture 
characterization18, and hydrogeophysical investigations19. 

The application of borehole GPR in the oil and gas 
context is rather limited. Subsequently, several studies 
have been performed in recent years to evaluate the 
feasibility of incorporating this technique to some of 
the industry’s operations. Zhou (2020)20 investigated 
the potential use of this technique for well logging and 
production monitoring. Heigl et al. (2005)21 performed 
simulations to determine if mud invasion can be estimated 
by means of borehole GPR. Miorali et al. (2011a)22 and 
(2011b)23 proposed a method to monitor water and oil 
movement in smart wells using permanent downhole 
GPR systems. Oloumi et al. (2015)24 investigated the 
feasibility of imaging oil well perforations using borehole 
GPR in reflection mode. Chen et al. (2002)25 showed that 
this technique is suitable for near wellbore imaging and 
geosteering applications. 

Theory
In XBGPR, the traveltime and amplitude of the received 

signals depend on the EM properties of the media through 
which they propagate. EM waves propagate through air 
with the speed of light. Consequently, their speed in 
the subsurface is a function of the EM properties of the 
subsurface and the frequency of the wave, as described 
by Eqn. 1: 
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where v is the speed of propagation, ω is the angular fre-
quency, µ is the magnetic permeability, ɛ is the dielectric 
permittivity, and σ is the electric conductivity. Moreover, 
if we assume low conductivity (low loss approximation), 
Eqn. 1 simplifies to Eqn. 2: 
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According to the low loss approximation in Eqn. 2, 
the speed of propagation is inversely proportional to 
µ and ɛ. Therefore, increasing either µ, or ɛ, or both, 
should result in lower propagation speed and increased 
signal traveltime. Several processes contribute to signal 
amplitude reduction, including attenuation, spherical 
spreading, scattering, as well as reflections at the inter-
faces. Similar to traveltime, attenuation is a function of 
the EM properties of the propagating medium as well 
as the signal frequency, as described by Eqn. 3:
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Fig. 1  A schematic representation of surface GPR (left), reflection borehole GPR (middle), and 
transmission borehole GPR (right), also known as cross-borehole GRP. 
 
 
 

 
 
Fig. 2  A schematic of a received waveform showing the first break, which is used to calculate the 
traveltime, and the first cycle peak-to-peak amplitude. 
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Fig. 2  A schematic of a received waveform showing the first break, which is used to calculate the 
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where α is the attenuation constant, ω is the angular 
frequency, µ is the magnetic permeability, ɛ is the di-
electric permittivity, and σ is the electric conductivity. 

In the case of oil reservoir fluids, significant changes 
in σ and ɛ are typically observed between oil and brine. 
Moreover, changes in µ are not usually observed, unless 
magnetic materials, such as iron oxide, are present in 
the formation. Therefore, µ may serve as a contrast to 
label injected fluids such that they can be differentiated 
from the fluids already present in the reservoir. 

The purpose of this work is to investigate the feasibility 
of labeling fluids using magnetic and dielectric contrast 
agents, and locating them via XBGPR surveys. A series 
of large-scale experiments performed using an array of 
shallow wells are presented. 

Testing Platform
An array of shallow wells designed to function as a testing 
platform for novel EM approaches was used to conduct 
the experiments. The entire platform consists of 47 wells 
of different depths and diameters, completed with non-
conductive and nonmagnetic casing to be suitable for 
EM transmissions, Fig. 3. All wells were sealed from 
the bottom so that no fluids can leak from or into the 
wellbores. Depending upon the inner diameter, depth, 
and location, the wells are divided in four categories: 
deep observation wells (DO1 to DO2), far observation 
wells (O1 to O6), near observation wells (O7 to O12), 
and shallow wells (C1-1 to C3-11). Table 1 summarizes 

the specifications and number of wells drilled for each 
category. For this work, only the near observation and 
shallow wells were used, the other wells are reserved 
for future tests. 

The array design takes into consideration important 
parameters to improve the quality of the planned EM 
surveys. In the case of XBGPR, the borehole depth, D, 
to borehole separation, S, as a rule of thumb should be 
greater than 2. Meeting this condition maximizes the 
angle coverage and prevents refracted airwaves from 
masking direct arrivals2. At the same time, it is import-
ant to make sure that S is large enough to be in the far 
field of the antenna radiation, such that Eqn. 4 is met: 
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where v is the ground velocity and f is the GPR center 
frequency. 

In our case, the borehole depth is 40 m, and the borehole 
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Fig. 3  A schematic representation of the testing platform. For the experiments presented in this work, 
only O7-O12 and C1-1 to C3-11 were used. 
 
 
 
 
 

Type of 
Well 

Inner 
Diameter 

(m) 

Depth 
(m) 

# of 
Wells 

Deep 
observation 0.3048 200 2 

Far 
observation 0.3048 40 6 

Near 
Observation 0.1524 40 6 

Shallow 
wells 0.3048 30 33 

 
Table 1  A summary of wells drilled and their dimensions. 
 
 
 
 

Fig. 3  A schematic representation of the testing platform. For the experiments presented in this work, only Wells O7-O12 and C1-1 to C3-11 were used.

Type of Well Inner 
Diameter (m) Depth (m) # of Wells

Deep observation 0.3048 200 2

Far observation 0.3048 40 6

Near observation 0.1524 40 6

Shallow wells 0.3048 30 33

Table 1  A summary of wells drilled and their dimensions.
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separation is 6 m, yielding a ratio of 6.67, well above the 
minimum recommendation of 2. The borehole separation 
is also larger than the velocity to center frequency ratio, 
which is approximately 1.2. Therefore, the dimensions 
of our array ensure significant angle coverage and far 
field conditions for the measurements. 

Acquisition System and Procedure
A typical XBGPR system consists of three main com-
ponents: a control unit, a power supply system, and an-
tennas. For our tests, we used a pair of MALA Borehole 
100 MHz Slimhole Antennas coupled to a MALA ProEx 
control unit. The antennas are powered downhole by 
batteries, and the data is conveyed to the control unit 
at the surface via fiber optics to avoid EM interference. 

The data was collected in a tomographic manner be-
tween pairs of observation wells using a multiple offset 
gathers approach. To maintain a balance between the time 
required to conduct each survey and the ray coverage, 
we opted for a semi-reciprocal acquisition setup, Fig. 
4. This approach yields higher resolution in the center 
and lower resolution close to the wellbore. It also yields 
higher ray coverage than a sparse setup and it is less 
time-consuming than a dense setup16. 

Prior to lowering the antennas, the traveltime through 

air for a known distance was recorded, to be used as 
a time-zero correction. Next, the Tx was lowered 5 m 
below the surface and the Rx was moved from 5 m above 
the Tx, to 5 m below it, collecting waveforms every 0.1 
m. It has been reported that when the angle between 
the Tx and Rx is large, the signal is received away from 
the antenna feed points, leading to errors in velocity 
estimates26. Consequently, we limited the acquisition 
to 5 m above and below the position of the Tx, which 
limits the angle to no more than 40°. Then, the Tx was 
lowered 1 m and the acquisition from 5 m above to 5 m 
below it every 0.1 m was repeated. 

This process continued until the Tx reached a depth of 
35 m. Next, both tools were brought to the surface and a 
second time-zero correction shot was acquired. We then 
exchanged the Tx and Rx boreholes and repeated the 
acquisition process previously described. This procedure 
was repeated for each pair of wells. 

Experiments and Fluid Preparation
The experiments involved filling the shallow wells with 
a certain type of fluid and conducting XBGPR tomo-
graphic acquisitions using the near observation wells. 
Five different experiments were conducted based on 
the type of fluid filling the shallow boreholes. Table 2 
summarizes the composition of each fluid, as well as the 
approximate EM properties. The well water was obtained 
from a well in the vicinity of the testing area. The AN-
132 polymer was acquired from SNF; the xanthan gum 
had a technical grade purity level and was acquired from 
FuFeng; the magnetite was acquired from LKAB under 
the commercial name of MagnaChem10. All chemicals 
were used as received. 

Mixing for fluids 3 to 5 was performed in a large tank 
with three rotating blades mounted at the top. The mixing 
procedure consisted of first filling the tank with water 
to 80% to 90% of the desired volume. Then, adding 
the magnetite (if applicable), followed by the polymer 
(xanthan or AN-132), while mixing. Next, mixing was 
stopped and the tank was topped up to the final volume. 
Finally, mixing was resumed and continued for one hour. 
During that time, the viscosity of the fluid was monitored. 
Approximately three batches had to be prepared for each 
experiment. Overall, the fluids looked homogeneous and 
the viscosity between different batches was comparable. 
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Fig. 4  A schematic of the three different acquisition setups. Sparse (left) results in ray coverage gaps 
close to the wellbore, semi-reciprocal (middle) improves ray coverage near to the wellbore, dense (right) 
results in the best ray coverage, but at increased data size and acquisition effort.  
 
 
# Name Fluid σ [S/m] εr μr 
1 Air 

(baseline) 
Air ~0 1 1 

2 Water Well water 0.5 80 1 
3 AN-132 2.5 g/L of AN-132 dissolved in well water 0.7 > 80 1 
4 Xanthan 5.0 g/L of xanthan dissolved in well water 0.8 > 80 1 

5 Magnetite 7.5 g/L of xanthan and 100 g/L of 
magnetite dissolved in well water 1.0 > 80 > 1 

 
Table 2  The fluids used to fill the shallow wells for each of the performed experiments. 
 
 
 

 
 
Fig. 5  The traveltime difference between water and air for wells O7 and O12. Since most of the 
traveltime differences are positive, it can be concluded that overall water is slower than air. 
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Sparse (left) results in ray coverage gaps close to 
the wellbore, semi-reciprocal (middle) improves ray 
coverage near to the wellbore, dense (right) results in 
the best ray coverage, but at increased data size and 
acquisition effort.

# Name Fluid σ [S/m] εr μr

1 Air (baseline) Air ~0 1 1

2 Water Well water 0.5 80 1

3 AN-132 2.5 g/L of AN-132 dissolved in well water 0.7 > 80 1

4 Xanthan 5.0 g/L of xanthan dissolved in well water 0.8 > 80 1

5 Magnetite 7.5 g/L of xanthan and 100 g/L of magnetite dissolved in well water 1.0 > 80 > 1

Table 2  The fluids used to fill the shallow wells for each of the performed experiments.
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Data Processing Workflow
Data processing and interpretation was done using bh_
tomo27, an open-source platform developed for GPR 
surveys. The raw data was subjected to the following 
preprocessing workflow: 

1. Filtering: A band pass filter was used to remove noise 
from the data. The low and high cut frequencies used 
are 10 MHz and 250 MHz, respectively. 

2. Pruning: Stations shallower than 5 m below the surface 
were removed, to avoid refracted waves propagating 
through the air. In addition, waveforms with a sig-
nal-to-noise ratio (SNR) below 1 were pruned. This 
process generally removed 30% to 50% of the data. 

After filtering and pruning, the data was processed 
to pick the traveltime and peak-to-peak amplitude for 
each trace. 

Traveltime Analysis
Traveltime picking was done using the semi-automatic 
traveltime picking module of bh_tomo. This approach 
entails picking the first break of a series of waveforms 
that are used to automatically pick the first break of the 
remaining data using cross correlation. Next, the manual 
traveltime picking module was used to quickly browse 
through the picked times and correct obvious mistakes. 
Most of the errors were due to low SNR. Once the data 
were picked, we proceeded to compare the traveltimes 
for different fluids. 

Traveltime Difference

The traveltime difference was estimated by compar-
ing the picked traveltime for a given Tx-Rx position 
for different fluids. This information was used as a first 
approximation to evaluate if the fluids were having an 
impact on the signal’s traveltime. This may be the best 
way to see small changes, because traveltime inversion 
involves smoothing, which could mask small changes 
in slowness. 

Figure 5 shows the traveltime difference between water 
and air for well pairs O7 and O12. Most of the differences 
are positive, meaning that the traveltime is longer when 
the wells are filled with water than when they are filled 
with air. It should be noted that the traveltime difference 

is generally small (< 4 ns). Similar results were obtained 
when comparing AN-132 and magnetite with air (data 
not shown). 

Traveltime Inversion
The next step involved inverting the traveltime data to 
obtain a map of slowness. Multiple grid element sizes for 
the inversion models were tested. The best results were 
obtained using elements of 0.25 m by 0.25 m, where the 
bh_tomo offers two different algorithms to perform the 
inversion, geostatistics and LSQR. For the work presented 
here, only the latter was used. Table 3 summarizes the 
parameters used to perform the inversion. In the absence 
of other constraints, the smoothing weight in x and z 
were modified until a minimum in the variance of the 
residuals (σ2) was obtained, Fig. 6. The inversion generates 
a map of subsurface velocity between two wells, Fig. 7. 

In addition to the regular inversion, bh_tomo has two 
options that allow for time-lapse evaluation of the data. 
The first one is simultaneous inversion, in which two 
data sets are inverted simultaneously while trying to be 

Fig. 5  The traveltime difference between water and air for Wells O7 and O12. Since most of the traveltime differences are positive, it can be 
concluded that overall water is slower than air.
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Parameter Value

Number of straight rays’ iterations 1

Number of curved rays’ iterations 2

Solver tolerance 1e-6

Maximum number of solver iterations 100

Constraints weights 1

Smoothing weight x 10

Smoothing weight y 10

Smoothing weight in z 10

Smoothing operator order 2

Maximum model parameter variation per iteration 50%

Table 3  The parameters used to perform the traveltime inversion using the LSQR 
algorithm.
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as close as possible to a reference tomogram; for example, 
air and water, with air as the reference. In this case, the 
simultaneous inversion would highlight the differenc-
es caused by the water. The second approach consists 

on inverting the change in traveltime difference rather 
than the traveltime itself. Both approaches were tested 
but simultaneous inversion did not generate satisfacto-
ry results. We speculate that the differences were too 
small and were masked by this approach. The second 
approach is better suited for small changes in traveltime. 
Subsequently, one limitation is that it assumes the ray 
paths are the same for both data sets. This assumption 
is reasonable if the difference in traveltime is small; 
however, it may not be suitable in situations where the 
difference in traveltime is large or if the soil conditions 
significantly changed from one survey to the other. The 
result of the inversion is a map of percentage change in 
slowness, Fig. 8. Regions where the change is positive 
represent portions of the reservoir that became slower 
in the second survey.

Amplitude Analysis and Inversion

Peak-to-peak amplitude picking was performed using the 
automatic function provided by bh_tomo. Next, the traces 
were inspected manually to correct obvious mistakes. 
Amplitude inversion was done using the LSQR algorithm 
to obtain maps of attenuation. The fitting parameters 
are the same used for the traveltime inversion, Table 
3, and were optimized to minimize the variance of the 
residuals. The inversion generates a map of attenuation 
between two wells, Fig. 9. 

Results and Discussion
A subset of six panels corresponding to well pairs O8-
O9, O12-O7, and O12-O11 were used to evaluate the 
results. We begin by investigating the data quality and 
ray coverage. The data shows low ray coverage in some 
regions and a complete lack of data for certain intervals, 

Fig. 6  The norm of the residuals (top left), residuals histogram (bottom left), residuals as a function of angle with respect to the horizontal (top right) 
and residuals as a function of Tx and Rx depth (bottom right). The smoothing weights was changed until a minimum in the variance of the 
residuals was achieved.
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Number of straight rays’ iterations 1 
Number of curved rays’ iterations 2 
Solver tolerance 1e-6 
Maximum number of solver iterations 100 
Constraints weights 1 
Smoothing weight x 10 
Smoothing weight y 10 
Smoothing weight in z 10 
Smoothing operator order 2 
Maximum model parameter variation per iteration 50% 

 
Table 3  The parameters used to perform the traveltime inversion using the LSQR algorithm. 
 
 
 
 
 
 
 
 

 
 
Fig. 6  The norm of the residuals (top left), residuals histogram (bottom left), residuals as a function of 
angle with respect to the horizontal (top right) and residuals as a function of Tx and Rx depth (bottom 
right). The smoothing weights was changed until a minimum in the variance of the residuals was 
achieved. 
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Fig. 7  The velocity map obtained for the two well panels (O12-O11 and O11-O12) inverted together with 
air-filled shallow wells. The fast regions are present in the center of the map, corresponding to the 
location of the shallow wells. 
 
 
 
 

 
 
Fig. 8  A map of change in slowness, as a percentage, obtained for wells O8-O9 and O9-O8 traveltime 
values of water minus air and using the inversion of air as the reference. Increases in slowness are 
shown in the central region, where the wells are located. This means that water is causing those regions 
to become slower than when the wells were empty. 
 

Fig. 7  The velocity map obtained for the two well panels 
(O12-O11 and O11-O12) inverted together with air-
filled shallow wells. The fast regions are present in the 
center of the map, corresponding to the location of the 
shallow wells.
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Fig. 10. Based on the resistivity logs of DO1 and DO2, 
it appears that for values below 50 Ωm, the signal falls 
below the limit of detection before reaching the Rx. We 
speculate that these intervals correspond to layers of 
clay, which are known to result in high attenuation for 
GPR signals11. Based on the ray coverage, we conclude 
that large variations in resistivity are present within the 
array. For example, for well pair O12-O7 there is no ray 
coverage below 25 m, while there is significant coverage 
for the other two well pairs, especially O12-O11. This 
suggests that some of the layers may not be continuous 
across the entire array. Because of the lack of data, the 
results obtained from regions with low ray coverage will 
have higher uncertainty. 

The traveltime difference data suggests that filling the 
wells with liquids results in increased traveltime. Figure 
11 shows the traveltime difference between water and air 
(top) and magnetite and water (bottom) for the panels 
obtained from Wells O7 and O12. Most of the traveltime 
differences for the first case are positive, meaning that 
filling the shallow wells with water increases the signal’s 
traveltime. 

A similar trend is observed when the wells are filled 
with fluids 3 to 5. This trend was expected because all 
liquids have higher ε and/or μ than water, but it must 
be noted that the traveltime is shorter than anticipated. 
This may be an indication of the wave going around the 
wells and partially avoiding the slow fluids, especial-
ly because the operating wavelength is comparable to 
the well spacing. Another factor that may contribute to 
this discrepancy is that the actual location of the wells 
is different from the original design due to inaccuracy 
while drilling. 

Consequently, in some cases, only a small portion of a 
fluid filled well is between the observation wells, rather 
than the entire well. When we compare magnetite and 
water, we observe that most of the traveltime differences 
are negative. This suggests that magnetite reduces the 
signal travel as compared to just water. A similar trend is 
observed when fluids 3 and 4 are compared with water. 
This trend was not expected because the product of ε 
and μ for fluids 3 to 5 should be higher than for water. 
Therefore, an increase on signal traveltime for these 
fluids over water was expected. 

The inversion of the traveltime difference shows similar 
results: an increase in slowness when the shallow wells 
are filled with liquids, Fig. 12, water showing the great-
est increase, followed by AN-132, xanthan, and finally 
magnetite. Based on the estimated EM properties of the 
fluids, Table 2, we expected water to result in the shortest 
traveltime and magnetite in the longest; however, the 
data shows the opposite. 

The attenuation data shows a clear difference between 
air filled and liquid filled shallow wells, but similar atten-
uation among the different liquids, with AN-132 showing 
the lowest attenuation, followed by xanthan, and then 
water and magnetite, Fig. 13. As expected, filling the wells 
with conductive liquids increases the signal attenuation. 

To understand the potential reasons for the discrep-
ancies observed in the traveltime data, 3D numerical 

Fig. 8  A map of change in slowness, as a percentage, 
obtained for Wells O8-O9 and O9-O8 traveltime values 
of water minus air and using the inversion of air as 
the reference. Increases in slowness are shown in the 
central region, where the wells are located. This means 
that water is causing those regions to become slower 
than when the wells were empty.
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Fig. 7  The velocity map obtained for the two well panels (O12-O11 and O11-O12) inverted together with 
air-filled shallow wells. The fast regions are present in the center of the map, corresponding to the 
location of the shallow wells. 
 
 
 
 

 
 
Fig. 8  A map of change in slowness, as a percentage, obtained for wells O8-O9 and O9-O8 traveltime 
values of water minus air and using the inversion of air as the reference. Increases in slowness are 
shown in the central region, where the wells are located. This means that water is causing those regions 
to become slower than when the wells were empty. 
 

Fig. 9  An attenuation map obtained for well panels O8-O9 
and O9-O8 inverted together with magnetite filled 
shallow wells. High attenuation regions are present in 
the center of the map, corresponding to the location of 
the shallow wells.
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Fig. 9  An attenuation map obtained for wells O8-O9 and O9-O8 panels inverted together with magnetite 
filled shallow wells. High attenuation regions are present in the center of the map, corresponding to the 
location of the shallow wells. 
 
 
 

 
 
Fig. 10  From left to right, the resistivity log for DO2, ray coverage for panel O9-O8, ray coverage for 
panel O12-O7, ray coverage for panel O12-O11, and the resistivity log for panel DO1. The intervals of low 
or null ray coverage seem to correlate with regions where the resistivity is below 50 Ωm. 
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simulations that employed parameters similar to those 
encountered in the field were conducted using a commer-
cially available finite element package. The numerical 
model was developed using a strategy similar to the one 
presented by Felix Servin et al. (2019)28. The simulation 
results confirm our experimental results: water appears 
to be the slowest fluid, followed by xanthan and then 
magnetite, Fig. 14. 

This trend was not anticipated based on the EM 

properties of the fluids. We speculate that a likely expla-
nation for such unexpected behavior is that the array is 
acting as a periodic structure imposing constraints on 
the propagation mode of the wave, leading to nonmono-
tonic relationships between the phase speed and the 
EM properties. Overall, the simulations agree with the 
experimental results; not only showing that the liquids 
are slower than air, but also displaying the right trend 
for the traveltime: water being the slowest, followed by 

Fig. 10  From left to right, the resistivity log for DO2, ray coverage for well panel O9-O8, ray coverage for well panel O12-O7, ray coverage for well 
panel O12-O11, and the resistivity log for well panel DO1. The intervals of low or null ray coverage seem to correlate with regions where the 
resistivity is below 50 Ωm.
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Fig. 9  An attenuation map obtained for wells O8-O9 and O9-O8 panels inverted together with magnetite 
filled shallow wells. High attenuation regions are present in the center of the map, corresponding to the 
location of the shallow wells. 
 
 
 

 
 
Fig. 10  From left to right, the resistivity log for DO2, ray coverage for panel O9-O8, ray coverage for 
panel O12-O7, ray coverage for panel O12-O11, and the resistivity log for panel DO1. The intervals of low 
or null ray coverage seem to correlate with regions where the resistivity is below 50 Ωm. 
 
 

Fig. 11  The traveltime difference between water and air (top), and magnetite and water (bottom) for Wells O7 and O12.
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O7 and O12. 
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Fig. 12  Maps of change in slowness. From left to right, water minus air, AN-132 minus air, xanthan minus air, and magnetite minus air. From top to 
bottom, well panel 8-9, well panel 12-7, and well panel 12-11.
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Fig. 12  Maps of change in slowness. From left to right, water minus air, AN-132 minus air, xanthan minus 
air, and magnetite minus air. From top to bottom, well 8-9 panel, well 12-7 panel, and well 12-11 panel. 
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AN-132, xanthan, and then magnetite. Based on the 
simulations, the difference in traveltime between water, 
AN-132, and xanthan is likely due to the difference in σ. 
Moreover, the difference in traveltime is observed not on 
the first arrival, but on the second peak of the signals. 

The implications are that the inversion algorithm may 
have to be modified to account for this. It is also shown 
that increasing σ reduces traveltime, e.g., water vs. xan-
than. This confirms our hypothesis that fluids that are 
more conductive will prevent the signal from penetrating 
deep into the wellbore, and therefore will diminish the 
effect of the fluids on the signal’s traveltime. 

The simulations also show that while water should re-
sult in reduced attenuation, the rest of the liquids should 
have similar amplitude. The field results show water 
resulting in attenuation comparable to the other fluids. 
This could be a consequence of slight changes in the 
saturation of the matrix due to rain in the days leading 

to some of the experiments; however, the results are in 
overall agreement with the simulations. 

Conclusions 
The results of these tests prove that XBGPR surveys 
can be used to locate relatively small targets of fluids via 
time-lapse tomographic surveys, even with no previous 
geological information. We were able to demonstrate the 
effect of µ and/or σ on the signal traveltime and amplitude. 
Consequently, the traveltime effect is smaller and the 
trend is different from what was originally anticipated, 
most likely due to the periodic structure of the array and 
the difference in σ of the fluids. The observed trends 
concur with the 3D numerical simulations, highlighting 
the importance of conducting simulations before and 
after future tests.

An analysis of the traveltime data enables differentiating 
between air and liquid targets, and to a lesser degree one 

Fig. 13  From left to right, maps of attenuation for well pair O8-O9 when filled with air, water, AN-132, xanthan, and magnetite, respectively. 
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Fig. 13  From left to right, maps of attenuation for well pair O8-O9 when filled with air, water, AN-132, 
xanthan, and magnetite, respectively. 
 
 
 
 

 
 
Fig. 14  The simulated received waveforms for different fluids for a 100 MHz signal. 
 
 
 
 
 
 
 

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

3.50E-08 4.50E-08 5.50E-08 6.50E-08 7.50E-08 8.50E-08

Vo
lta

ge
 M

ea
su

re
d 

by
 th

e 
R

x 
(V

)

Time (s)

Air

Water

Magnetic

Xanthan/AN-132

Fig. 14  The simulated received waveforms for different fluids for a 100 MHz signal.
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Fig. 13  From left to right, maps of attenuation for well pair O8-O9 when filled with air, water, AN-132, 
xanthan, and magnetite, respectively. 
 
 
 
 

 
 
Fig. 14  The simulated received waveforms for different fluids for a 100 MHz signal. 
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liquid from another. Subsequently, the behavior is not 
what was expected prior to conducting the experiments. 
Based on the experimental and simulations results, we 
conclude that the electrical conductivity of the fluids 
has a significant effect on traveltime. For a given fluid, 
increasing the conductivity will reduce the traveltime. 
Looking at the attenuation data, we conclude that in-
creasing conductivity will also reduce signal amplitude. 

Because of the difference in conductivity between the 
different fluids, it was not possible to quantify how much 
effect µ had on signal traveltime. Future tests should be 
designed such that all fluids have as much as possible 
the same conductivity. Due to the design of the testing 
platform, sharp changes in EM properties are expected 
between the rock and the wells. Consequently, inversion 
involves smoothing, and therefore, is not best suited for 
sharp changes. It may be worth exploring the possibility 
of using full waveform inversion. It must also be noted 
that in the reservoir, such sharp changes are not expected. 

Moving forward, we recommend conducting similar 
experiments in reflection mode, since this setup appears 
to be more suitable for oil and gas applications, given the 
rather limited penetration obtained in transmission mode. 
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