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Gas injection in subsurface reservoirs is of significant interest to the petroleum industry for the enhanced 
oil recovery (EOR) process. There exists geological uncertainty in the subsurface due to the limited 
measurements. Optimization under such uncertainty is, therefore, required to make more robust oper-
ational decisions to achieve maximum EOR with a minimum risk of early breakthrough. 

This work introduces an integrated machine learning assisted workflow for the optimization under 
uncertainty in subsurface reservoirs. The proposed workflow includes three steps: (1) Training sample 
generation. We first identify the uncertain parameters, which affect the objective of interests. We then 
generate the input designs using Latin Hypercube Sampling (LHS) based on the identified uncertain 
parameters. High fidelity simulations based on the MATLAB Reservoir Simulation Toolbox (MRST) 
are run for each of the input designs to obtain the objective of interests as outputs. (2) Surrogate model 
development. A data-driven surrogate model is then built to model the nonlinear mapping between the 
input and output results from Step 1. Herein, the Bayesian optimization technique is implemented to 
obtain the surrogate model. (3) Optimization under uncertainty. We first conduct a blind test on the 
proposed surrogate model with high fidelity simulations. Followed by Monte Carlo to perform the un-
certainty quantifications and a genetic algorithm (GA) to conduct the optimization. 

This work introduces an efficient, robust, and accurate machine learning assisted workflow for gas 
injection optimization under uncertainty in subsurface reservoirs. To our best knowledge, this approach 
is applied for the first time.
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Abstract  /

Introduction
Subsurface reservoirs exhibit geological uncertainty since we have a limited number of measurements. Such 
uncertainty can make the decision making process very challenging. Gas injection problems often feature more 
complex physics because of the significant contrast in compressibility and density compared to water injection cases. 
This work takes gas injection into oil reservoirs as an example, and introduces an efficient and robust workflow 
for optimization under uncertainty using machine learning techniques.

Recent advances in machine learning have inspired many applications in the petroleum industry. Examples in-
clude fracture recognition from outcrops, upscaling of discrete fracture models, fracture permeability estimation, 
multicomponent flash calculation, and carbon dioxide leakage rate forecasting1-6. Their studies demonstrate that 
provided with large amounts of high quality data sets and optimal network hyperparameters, this technology is 
competitive to traditional approaches in terms of accuracy and efficiency. 

The abovementioned applications correspond to four network architectures, respectively: (1) U-Net for image-to-im-
age problems, (2) convolutional neural network for image to value problems, (3) artificial neural network (ANN) 
for value-to-value problems, (4) long short-term memory (LSTM) for time series problems. The ANN model, with 
time as input also could deal with time series problems, yet honors simplicity and efficiency compared to LSTM7, 

8. In this work, the surrogate model developed by ANN will replace the expensive high fidelity simulation model.
The proposed workflow is comprised of three steps: (1) training sample generation, (2) surrogate model develop-

ment, and (3) optimization under uncertainty. 

Problem Statement
We consider injecting gas into oil reservoirs as an example. The continuity equation and Darcy’s law are applied 
to govern the corresponding physics, in which the continuity equation of phase, α, is expressed as:

 1

where Q is the sink/source term,  is velocity, p is density, S is saturation,  is porosity, and t is time.



3 The Aramco Journal of Technology Summer 2022

Darcy’s law models the velocity as:

 2

where kr is the relative permeability, µ is viscosity,  
is the absolute permeability tensor, p is pressure, g is 
gravity acceleration, and z is the depth. We constrain 
phase saturations by using the following equation:

Sg + So = 1 3

and relate two pressures by capillary pressure 
(denoted by Pc) function:

Pc(Sw) = Pg – Po 4

The time-dependent oil recovery factor (denoted by 
RFo), as one objective of interest, is given by:

 5

where QP is production rate measured under standard 
conditions, Bo is the oil formation volume factor, Vb 
is the bulk reservoir volume, and Soini

 is the initial oil 
saturation. The other objective of interest refers to the 
time when gas breakthrough occurs (denoted by tbreak). 

We implement the first Society of Petroleum Engineers 
benchmark as the high fidelity simulation model. It is 
a live oil/dry gas black oil model with nearly immo-
bile water. The model is initially undersaturated with 
a uniform mixture of water (Swini = 0.12) and oil (Soini = 
0.88) with no initial free gas (Sgini = 0). We assume a 
constant dissolved gas-oil ratio throughout the model. 
The model resembles a three-layer cake configuration, 
in which each layer is assumed to be homogeneous and 
isotropic. Future work will address significantly hetero-
geneous and anisotropic cases. The geological uncer-
tainty is represented by changing the permeability value 
and corresponding porosity value for each layer. In this 
study, the high fidelity simulation is solved by a fully 
implicit black oil solver within the MATLAB Reservoir 
Simulation Toolbox (MRST) framework. A detailed 
numerical implementation can be found in Lie (2019)9. 

We consider a base case, in which permeability val-
ues of 2,000 mD, 200 mD, and 800 mD are assigned 
to each layer with a constant gas injection rate of 100 
million standard cubic feet per day (MMscfd). The oil 
production rate is fixed before breakthrough and then 
converts to constant borehole pressure, i.e., bottom-hole 
pressure, after breakthrough. Other parameters and 
their corresponding values are provided in Lie (2019)9 
and Odeh (1981)10. 

Figure 1 illustrates the layered cake permeability distri-
bution and diagonally opposite well placement. Figure 
2 shows the gas saturation with the increasing time for 
the base case.

Proposed Workflow
Although the high fidelity simulation model provides the 
most accurate methodology for capturing the physics, 
it suffers from intensive computation costs. Multiple 

simulation runs are required for applications such as 
optimization under uncertainty, making it infeasible 
for practical engineering purposes, e.g., quick decision 
making. It integrates knowledge of sampling techniques, 
machine learning, uncertainty quantification, and 
multi-object optimization. 

We will detail the workflow in the following three 
steps, Fig. 3.

Training Sample Generation

We first identify the uncertain parameters that impact 
the objective of interests, i.e., EOR and breakthrough 
time. With these identified uncertain parameters, vari-
ous input designs are generated using Latin Hypercube 
Sampling (LHS). The implementation of LHS guarantees 
data samples are distributed in a space filling manner 

Fig. 1  The layered cake permeability distribution and well placement.

Fig. 2  The gas saturation with increasing time. We observe the typically gravity 
dominated flow behavior, i.e., gas tending to migrate upwards, due to the 
significant contrast in density between the gas and oil.
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instead of a clustering manner2, 3, 11. 
Table 1 summarizes the identified uncertain parameters, 

including geological and operational (in light blue). Their 
corresponding ranges are collected from the literature, in 
which range of permeability is adopted and modified from 
the North Sea fields12. Correlation between porosity and 
permeability is modified from Chen and Pawar (2019)7, in 
which we reduce the exponential coefficient to account 
for a bigger range of permeability values. The range of 
gas injection rates are collected from various projects 
in the North Sea, and example cases from MRST9, 13. 
We assume all uncertain parameters to be independent 
with uniform distributions except for porosity. The cor-
responding values of porosity are calculated based on 
permeability values using the correlation in Table 1. (Note: 
K1, K2, and K3 correspond to permeability values of the 
first, second, and third layer, respectively.)

High fidelity simulations based on MRST9 are run for 
each input design to generate the corresponding objective 
of interests as output. We then collect the inputs and 

outputs to be read for training the surrogate model.

Surrogate Model Development

This step strives to build a data-driven, physics featuring 
surrogate model to map the nonlinear relation between 
the inputs and outputs obtained earlier. Figure 4 shows 
the implemented ANN architecture with one input layer, 
various hidden layers, one output layer. The time term 
(in red) is added into the input layer to capture time-de-
pendent problems. Three key elements, including the 
ratio of training to validation samples, proper network 
architecture, and optimal weights and biases, are criti-
cal for obtaining a successfully surrogate ANN model. 
Obviously, choosing appropriate hyperparameters related 
to these three elements is challenging.

The traditional approach of tuning hyperparameters 
based on trial and error is exhaustive and labor intensive. 
As an alternative, Bayesian optimization is implemented 
to automate the tuning process in this work. A detailed 
description of Bayesian optimization could be found in 
Frazier (2018)14. 

Fig. 3  The proposed workflow includes three steps: (1) training sample generation, (2) surrogate model development, and (3) optimization under 
uncertainty.
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Uncertain Parameters Lower Bound Upper Bound Distribution

Permeability (K1) 200 mD 2,000 mD Uniform

Permeability (K2) 200 mD 2,000 mD Uniform

Permeability (K3) 200 mD 2,000 mD Uniform

Porosity (Ø) 0.24 0.375 Ø = 0.082 × K0.2

Gas Injection Rate (Qinj) 80 MMscfd 134 MMscfd Uniform

Table 1  The identified uncertain parameters and corresponding ranges and distributions.
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Attention should be paid to the coupled training valida-
tion process regarding overfitting and gradient vanishing 
issues. The overfitting issue takes place with a consid-
erable number of epochs. The gradient vanishing issue 
occurs when choosing deep neural networks. 

Optimization under Uncertainty

In this step, we perform gas injection optimization 
under these geological uncertainties to achieve max-
imum EOR while maintaining the minimum risk of 
early breakthrough. 

We further validate the developed surrogate model 
using various blind cases. The following parameters 
are used to evaluate its performance.

• APE: The average of prediction errors (PE) between 
the predicted (denoted by MP ) and ground truth (de-
noted by MG) solutions. M refers to the objective of 
interests, i.e., recovery factor or gas breakthrough 
time.

 6

 7

• PPE: The percentage of PEs within an acceptable 
error margin — herein, 10%.

 8

• RMSE: The root-mean-square error of PEs.

 9

where N is the total number of points.
If values of these three parameters are within certain 

ranges, it means the developed surrogate model passes 

the blind test and could be implemented as a fully trusted 
surrogate. Otherwise, we need to retrain the ANN model 
by increasing the number of samples or adjusting the 
ratio of training to validation samples. This process is 
repeated until the trained surrogate model passes the 
blind test.

We then perform Monte Carlo simulations based on 
the fully trusted surrogate model to explore uncertainty 
propagation behaviors. The corresponding responses 
are grouped in the way from which the probabilistic 
forecast of percentiles, P10, P50, and P90, are quantified. 
We increase the number of runs until P10, P50, and P90 
values tend to be stable. The uncertain ranges provide 
a rough estimation of the objective of interests under 
the ranges of uncertain parameters, previously listed 
in Table 1.

In this work, the genetic algorithm (GA) is performed 
to a multi-object optimization problem — maximum 
EOR while minimum risk of breakthrough — to deter-
mine the optimized gas injection rate. We then deploy 
the Pareto front to seek a compromise between the oil 
recovery factor and gas breakthrough time. 

The key to the proposed workflow is guaranteeing a 
fully trusted surrogate model. More rigorous measures 
are therefore required to assure the robustness of the 
proposed workflow. 

Results and Discussion
Following the first two steps previously discussed, we 
generate 50 input designs based on LHS and run the 
high fidelity simulations using MRST. We select 20 time 
steps from each simulation and have a total of 1,000 data 
samples for the Bayesian optimized training validation 
process. Table 2 summarizes the optimal ratio of training 
to validation samples, the Bayesian optimized ANN ar-
chitecture and hyperparameters, and model evaluation 
performance. For illustration purposes, we only show oil 
recovery as an example. Gas breakthrough time follows 

Fig. 4  The implemented ANN architecture with one input layer, various hidden layers, and one output layer.
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the same way and will not be detailed.
As observed in Table 2, the Bayesian optimized ANN 

architecture features four hidden layers with 4, 7, 8, and 
6 neurons on each layer. The optimal ratio of training to 
validation samples is 7:3. The optimized model achieves 
accuracy exceeding 95% on both the training and vali-
dation samples with PPE of 97% and 99%, respectively.

Overfitting issues typically occur — good predictions, 
i.e., small errors, on training data, yet poor performance 
for validation samples, Fig. 5. The model performance 
in terms of validation shows an optimum epoch, before 
and after which two statuses are underfitting and over-
fitting, respectively. 

Another issue we need to pay attention to is the gradient 
vanishing issue, as weight and biases will not be updated 
with a very long network structure. According to the 
chain rule, the gradient term (highlight in blue) in Eqn. 
10 is the multiplication of many derivative terms. If with 
very deep neural networks, the blue term is almost zero, 
which leads to weights not being updated. Therefore, 
proper network architecture is also crucial for obtaining 

a successfully trained model.

 10

Figures 6a and 6b illustrates the diagonal plots between 

ANN Architecture 
and Hyperparameters Four hidden layers with 4, 7, 8, and 6 neurons, respectively.

Model Training

Training Samples 700 (70%)

APE 1.7%

PPE 97%

RMSE 4.4%

Model Validation

Validation Samples 300 (30%)

APE 1.4%

PPE 99%

RMSE 3.5%

Table 2  The optimized ANN architecture, ANN hyperparameters, and model performance.

Fig. 5  The epoch vs. MSE of the model.

Underfitting Overfitting

Fig. 6  The diagonal plots showing the surrogate vs. ground truth predictions for  
(a) training, and (b) validation samples.

 

 

 

Saudi Aramco: Public 

    
 
Fig. 6  The diagonal plots showing the surrogate vs. ground truth predictions for (a) training, and (b) 
validation samples. 
 
 

 

 

Case 1

1 1663K mD=

2 358K mD=

3 898K mD=

96injQ MMSCFD=

Case 2

1 1933K mD=

2 1258K mD=

3 1618K mD=

111injQ MMSCFD=

(a) (b) 

 

 

 

Saudi Aramco: Public 

    
 
Fig. 6  The diagonal plots showing the surrogate vs. ground truth predictions for (a) training, and (b) 
validation samples. 
 
 

 

 

Case 1

1 1663K mD=

2 358K mD=

3 898K mD=

96injQ MMSCFD=

Case 2

1 1933K mD=

2 1258K mD=

3 1618K mD=

111injQ MMSCFD=

(a) (b) 



7 The Aramco Journal of Technology Summer 2022

the trained surrogate and ground truth solutions, respec-
tively. Datapoints falling on the diagonal line means an 
exact match, while in off-diagonal regions shows devia-
tions. As shown, the off-diagonal points are almost equally 
distributed on both sides of the diagonal line, indicating 
the surrogate model shows stable performance instead 
of all overestimation or underestimation situations. The 
APEs on training and validation samples are 1.7% and 
1.4%, respectively.

The key to the proposed workflow is guaranteeing a 
fully trusted surrogate model. Blind tests with four newly 
generated cases are selected further to verify the accuracy 
of the optimized surrogate model, plotted in the form of 
oil recovery vs. time, Fig. 7. Results show an excellent 
match with the ground truth solutions, meaning the 
developed surrogate model could be treated as a fully 
trusted model for future applications.

We then conduct 5,000 Monte Carlo runs to explore the 
uncertainty propagation behaviors using the fully trusted 
surrogate model, which are proven to be stable in terms 
of the values of P10, P50, and P90. The uncertain ranges 
provide a rough estimation of variation of oil recovery 
under the ranges of uncertain parameters in Table 1. 

Figure 8 illustrates the uncertainty analysis for time 
series oil recovery based on the 5,000 runs. We ob-
serve three prominent trends; recovery factors increase 
gradually with a very narrow range at the early stage, 

then increase abruptly in the middle stage, and finally 
reach a stable trend. Yet, recovery factors show a wide 
uncertainty range in the last two stages. These three 
trends reflect three corresponding physical processes: (1) 
before the gas breakthrough (only oil production stage), 
(2) early-stage gas breakthrough (low gas-oil ratio stage), 
and (3) later gas breakthrough (high gas-oil ratio stage).

Fig. 7  The blind test with four new cases between the proposed surrogate and ground truth predictions, showing a good match.

Fig. 8  Uncertainty analysis for time-dependent oil recovery factor based on 5,000 
Monte Carlo runs applied to the fully trusted surrogate model.
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We finally perform optimization to achieve the best 
recovery factor with a minimum risk of gas breakthrough, 
belonging to the constrained multi-objective optimization 
problem. We only have gas injection rate as the decision 
variable. The Pareto front is plotted to seek a compromise 
between the oil recovery factor and gas breakthrough 
time. For illustration purposes, we take the base case as 
an example with varying gas injection rates. 

Figure 9 shows the relation between two objectives; 
gas breakthrough vs. oil recovery at breakthrough and 
final time. We obtain an optimized gas injection rate of 
134 MMscfd, under which we have the maximum oil 
recovery at both states — 0.20 and 0.35 — and the lon-
gest non-gas breakthrough production time of 7.3 years.

Conclusions
This work introduces an efficient, robust, and accurate 
machine learning assisted workflow designed for gas 
injection optimization under geological uncertainty to 
achieve maximum EOR with a minimum risk of early 
breakthrough. It incorporates knowledge of sampling 
techniques, machine learning, uncertainty quantification, 
and multi-object optimization. To our best knowledge, 
this approach is implemented for the first time. We sum-
marize the main findings as.

1. An ANN with time term as input could capture 
time-dependent problems (oil recovery vs. time), yet 
honoring more simplicity and flexibility than the 
LSTM.

2. The implementation of LHS assures space filling data 
samples. The data samples generally show clustering 
distribution without the guidance of LHS, which 
results in unbalanced performance, i.e., good per-
formance on samples from the clustered area, but 
poor predictions on samples from the sparse area.

3. The quality of samples significantly impacts the quality 
of the surrogate model and furthers its predictability. 

Herein, high fidelity simulations using a fully implicit 
black oil solver within the MRST are applied to gen-
erate the training and validation samples.

4. For the fixed number of data samples, optimal hy-
perparameters — including network structure — are 
crucial for obtaining a successful ANN-based surro-
gate model. Herein, we employ Bayesian optimization 
to automate the process of tuning hyperparameters 
instead of traditional trial error.

5. Special attention should be paid to overfitting and 
gradient vanishing issues during the coupled training 
validation process. An optimal epoch is selected to 
avoid overfitting issues. A proper number of hidden 
layers is chosen to prevent vanishing gradient issues.

6. A blind test is required to verify the accuracy of the 
trained model further to obtain a fully trusted sur-
rogate model. More rigorous measures are needed, 
such as increasing the number of data samples or 
adjusting the ratio of training to validation samples.

7. Monte Carlo runs based on the fully trusted surro-
gate model are performed to explore the uncertainty 
propagation behaviors. We should assure stable and 
convergent results by increasing the number of runs.

8. A GA is performed to optimize the operational pa-
rameter, i.e., gas injection rate, to achieve maximum 
EOR with a minimum risk of early breakthrough 
— multi-object optimization problems. The Pareto 
front is employed to seek a compromise between the 
oil recovery factor and gas breakthrough time.

9. The proposed workflow shows great potential for 
optimization under uncertainty and could be extended 
to more general applications, such as in fractured 
reservoirs or coupled with history matching workflow.

Future work will focus on exploring the performance 
in terms of accuracy and efficiency between ANN and 

Fig. 9  The gas breakthrough time vs. oil recovery at breakthrough (blue squares) and final time (red stars).
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LSTM in describing complex time-dependent problems. 
Also, more complex cases should be addressed, such as 
significant heterogeneous cases. 
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Three stable and robust types of graphene, modified with linear alkylamines, including n-propylamine, 
n-hexylamine, and n-dodecylamine, were synthesized. The prepared materials, graphene modified 
with n-propylamine (GPA), graphene modified with n-hexylamine (GHA), and graphene modified with 
n-dodecylamine (GDA) were characterized and evaluated for their performance in removing oil com-
ponent models. 

Oil and organic pollutants were used as models to determine the absorption capacity of the synthe-
sized materials. The functionalized graphene materials have efficiently absorbed oils. The separation 
efficiency of the oil from the water was high. The functionalized graphene, due to its branched chains, 
can be proven as an efficient porous material for the oil-water separation.

Graphene Modified with Linear Alkylamines  
for Oil Pollutants Removal from Water
Norah W. Aljuryyed and Fahd I. Alghunaimi 

Abstract  /

Introduction
Many conventional methods are being used for the separation of oil and water. The traditional methods consist 
of ultrasonic separation, coagulation, gravity separation, biological treatment, electrochemical treatment, skim-
mers, centrifugation and in situ burning1. The conventional methods are suffering from some serious issues of 
efficiencies and high cost. Oil skimmers displayed lower separation efficiencies and an expensive process. The 
in situ burning of oil not only destroyed the oil but also introduced secondary pollutants into the environment. 
Mechanical extraction is a time-consuming process and consumed a large amount of energy2. The inefficiency, 
high cost, and environmental concerns demand new methods and smart materials for efficient and eco-friendly 
separation of oil and water.

In oil-water separation, the super wettable materials are receiving significant attention along with a substantial 
increase in testing. Researchers focused their attention on improving the selective wettability of the material2. 
The super selective wettable materials that are generally used for the oil-water separation are classified as super-
hydrophilic and superhydrophobic materials. The superhydrophilic materials allowed the absorption or passage 
of water through it while oil was prevented from absorption. In the case of superhydrophobic materials, the water 
was prevented to pass and oil readily passed or absorbed by the material. 

The surfaces are defined as hydrophilic when the water contact angle is less than 90° and hydrophobic when 
greater than 90°. The materials are defined as superhydrophobic if they displayed the water contact angle greater 
than 150°. The superhydrophobic materials are considered one of the decent opportunities for the separation of 
the oil and nonpolar organic contaminants from water.

The surfaces of the various support porous architecture are being modified and functionalized to achieve the 
surface hydrophobicity. The support materials are not limited to cotton, fabrics, meshes, and sponges/foams. The 
superhydrophobic surfaces were introduced by using several methodologies, including a layer by layer assembling, 
immersion, drop coating, hydrothermal, and polymerization. The numerous materials are utilized to improve the 
hydrophobicity such as graphene3, carbon nanotubes4, carbon nanofibers5, metal nanoparticles, nanodiamonds, 
polymers, and others6-8. The efforts are being continued to develop cost-effective and robust materials for the 
efficient separation of the oil and other organic toxins from the water.

In this work, we have prepared graphene from graphite and then the obtained graphene nanosheets were function-
alized with linear alkylamines. The prepared materials, graphene modified with n-propylamine (GPA), graphene 
modified with n-hexylamine (GHA), and graphene modified with n-dodecylamine (GDA), were characterized and 
evaluated for the removal of oil and organic pollutants from water.

Experimental Section
Materials
The natural graphite powder (99.9%) was commercially purchased from Fluka AG, Chemische Fabrik, Buchs 
(Switzerland). The sulfuric acid (H2SO4) (98%), hydrochloric (HCl) acid (35%), sodium nitrate (NaNO3) (98%), 
hydrogen peroxide (H2O2) (30%), hydrazine hydrate (80%), and potassium permanganate (KMnO4) (99%) were 
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obtained from Sigma-Aldrich Co. (USA) and were used 
without further purification. The n-propylamine (PA), 
n-hexylamine (HA), and n-dodecylamine (DA) were 
purchased from Merck Schuchardt OHG (Germany) 
and were used as received. The cyclohexane, n-hex-
ane, n-decane, n-heptane, and absolute ethanol (99.8%) 
were supplied by Sigma-Aldrich Co. (USA) and used 
as received. Deionized (DI) water was used throughout 
the research.

Synthesis of Graphene Oxide (GO)

The graphene oxide (GO) nanosheets were prepared 
by a modified Hummer’s method. Succinctly, graphite 
powder (2 g) and NaNO3 (2 g) were added to 90 mL of 
concentrated H2SO4 (98%) in an ice bath (0 ºC to 5 ºC) 
with continuous stirring. After 4 hours of stirring the 
mixture at this temperature, KMnO4 (12 g) was slowly 
added to the suspension with care, keeping the tem-
perature below 15 ºC. 

Afterward, 184 mL of DI water was slowly added to 
dilute the mixture and stirred continuously for 2 hours. 
The mixture was then stirred at 35 °C for 2 hours after 
removing the ice bath. The mixture was then refluxed 
at 98 °C for 10 to 15 minutes. After 10 minutes, the 
temperature was changed to 30 °C, which changed the 
solution color to brown. The solution was finally treated 
with 40 mL H2O2 by which the color changed to bright 
yellow. Following this, 200 mL of water was added and 
stirred for 1 hour. 

It was then kept without stirring for 3 to 4 hours, where 
the particles settled at the bottom and the remaining 
water was poured to filter. The resulting mixture was 
washed repeatedly by centrifugation (7,000 rpm for 15 
minutes) with 10% HCl acid and then followed by DI 
water several times until it formed a gel-like substance 
with neutral pH, and the supernatant was decanted away. 
After centrifugation, the gel-like substance was dried in a 
vacuum at 60 °C for at least 6 hours to obtain GO powder.

Synthesis of Amine Functionalized GO

The synthesized GO powder was dispersed in DI water 
(0.5 g GO/100 mL DI water), and the resulting suspension 
was sonicated for 1 hour prior to subsequent surface mod-
ification. Alkyl amine (about 12 g) was dissolved in 200 
mL of ethanol, and then the GO water suspension was 
added to the alkylamine ethanol solution. The mixture 
was stirred continuously for a day at room temperature. 
The alkyl amine modified graphene was separated by 
centrifuge. 

The reduction of alkyl amine functionalized GO was 
done by adding 5 mL of hydrazine hydrate, and the 
mixture was refluxed for 3 hours at 95 °C. The final 
product was washed by filtration with an ethanol-water 
mixture (1:1) to eliminate unreacted hydrazine hydrate 
or excess alkyl amine. The material was dried under 
vacuum at 60 °C for at least a day. The resulting solid 
was vacuum dried at 60 °C for at least 24 hours. A syn-
thesis procedure was used to obtain graphene modified 
with GPA, GHA, and GDA materials, Figs. 1a and 1b. 

Characterizations

The Fourier transform infrared (FTIR) spectroscopy 

of the materials were obtained using a Thermo Nicolet 
6700 FT-IR spectrophotometer. Potassium bromide 
was ground with the sample to prepare the pellet for 
better resolution of the peaks. All samples were scanned 
in the wave number range of 400 cm−1 to 4,000 cm−1. 
The Raman spectra were obtained using a Jobin Yvon 
Horiba LabRAM spectrometer with backscattered con-
focal configuration. 

A long working distance objective with a magnification 
of 50x was used both to collect the scattered light and 
to focus the laser beam on the sample surface. Samples 
were scanned from Raman shift of 700 cm−1 to 2,000 
cm−1. The contact angles of the various hydrophobic 
materials were measured using an Attension Theta Flex 
from Biolin Scientific. 

Oil Absorption Test

The weight measurements before and after oil absorption 
were used to evaluate the absorption capacity of the 
prepared materials for oil and different kinds of organic 
solvents. The original weight of the sample was weighed 
and recorded as Mi. Then, the sample was placed into 
various oils and organic solvents for absorption. The 
sample was weighed when, with the increase of absorption 
time, its weight was unchanged; this weight was recorded 
as Mt. The absorption capacity of materials, Q, for oil 
and various organic solvents, was calculated according 
to the following equation .

Fig. 1a  The procedure of producing GDA.

Fig. 1b  The procedure of producing GHA (left) and GPA (right).
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Where Mt is the weight of the material after absorption 
of oil or organic solvents in time, t, and the Mi of the 
dry material. The separation efficiency of materials was 
also assessed by measuring the weight percentage of the 
collected oil or solvent in oil-water or an organic solvent 
water mixture. Methylene blue dye was used to color the 
water layer to make it distinct from the organic layer. 

Results and Discussion
Characterization

Figure 2 displays the FTIR spectrum of pure GO, which 
indicates the existence of some oxygen functionalities. 
The broad absorption peak at 3,426 cm−1 is attributed 
to the O−H stretching vibrations, which confirms the 
presence of the hydroxyl groups on the surface of GO 
and a small amount of adsorbed water molecules. 

This corroborates the fact that GO is a greatly ab-
sorptive material, as proven by its tendency to become 
a gel-like solution. The peak at 1,724 cm−1 is attributed to 
the C=O stretching vibrations in the carboxylic groups 
at the edges of the basal graphene GO planes. The GO 
also displays two intense absorption bands at 1,225 cm−1 
and 1,054 cm−1 that are respectively attributed to the 
C−O (alcohol) and C−O (epoxide) stretching vibrations. 
The peak at 1,626 cm−1 corresponds to the C=C bond, 
which shows the retention of sp2 hybridized carbon even 
after the oxidation of the graphite. 

Figure 2 also shows the spectra of the reduced GO 
functionalized with two different alkylamines as indicated. 
The striking difference in these spectra relative to that 
of GO is the disappearance of the bands corresponding 
to some oxygen containing functionalities. This may be 
attributed to the reaction of amine terminated organic 
molecules (R-NH2) forming covalent linkage with the 
functional moieties, e.g., COOH, at the edges of the 
graphene sheets through amide bonding. Also, the loss of 
the oxygen functional peaks is indicative of the subsequent 
reduction of the modified GO by hydrazine hydrate. 

This chemical reduction further exposes more aromatic 
islands at the basal plane indicated by the C=C bonds at 
the basal plane, which can be confirmed from the C=C 
stretching at ~1,630 cm−1. In addition, the band at 3,426 
cm−1 in GO shifts somewhat to 3,435 cm−1 with symmetric 
peak shape and less intense peak, which may be indicative 
of the N–H stretching of the grafted amine onto GO via 
the amidation reaction. The doublets at 2,921 cm−1 and 
2,853 cm−1 correspond to the asymmetric and symmetric 
C–H vibrations of the alkyl groups, respectively.

Raman spectroscopy gives an overview of the morphol-
ogy of carbon-based materials. There are two prominent 
bands for such materials, such as the D and G bands, 
Fig. 3. The G model, which is peaked at 1,587 cm−1 cor-
responds to the in-plane vibrations of the sp2 hybridized 
carbon atoms present in both rings and chains. The 
disorder band (D band) at 1,331 cm−1 is indicative of 
the structural disorder caused by the sp3 carbon atoms 
covalently bonded to the epoxide and hydroxyl func-
tionalities in the GO basal plane. 

The ratio of the peak intensity of the D to G bands, 
ID/IG, is used to evaluate the extent of disorder in the 

graphene-based material. The higher D band indicates 
the breaking of the sp2 bonds and forming of the new 
sp3 bonds. Figure 3 also displays the Raman spectra of 
the GO and amine functionalized GO. The ID/IG, for 
GDA (ID/IG = 1.41), GHA (ID/IG = 1.40) and GPA (ID/
IG = 1.31), increased compared to that for GO (ID/IG 

Fig. 2  The FTIR spectra of the prepared materials.

Fig. 3  The Raman spectra of the prepared materials recorded using 633 nm laser 
           excitation.
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= 1.14). This fractional increase in peak intensity ratio 
demonstrates that new defects are produced during the 
functionalization of the GO. 

Absorption Performance of the Material

Experiments were carried out to assess quantitative-
ly the oil absorption performance of the three amine 
functionalized graphene materials. In typical absorp-
tion capacity measurements, oil and common organic 
pollutants, including decane, cyclohexane, and hexane, 
were selected as pollutant models. In this test, the ma-
terials were placed in a beaker containing oil or organic 
solvents to be absorbed. Each material was submerged 
under 10 mL of the absorbate and pressed in the liquid 
for maximum oil absorption. The materials were then 
taken out and compressed manually with the aid of a 
quick-grip clamp. 

The absorption capacity is greatly dependent on the po-
rosity of the materials. More porous structures will afford 
high liquid absorption. Therefore, materials with higher 
hydrophobicity will absorb organic liquids more readily 
and separate oil from water more effectively. Figure 4 
presents the absorption capacities of the amine function-
alized materials for the oil and the nonpolar solvents, 
which are 25 to 65 times its own weight, based on the 
density and viscosity of the oil and solvents. The oil ab-
sorption performance and high selectivity are associated 
with the porous structures and the superoleophilic and 
superhydrophobic nature of the GDA oil absorption 
films, which show four to 16 times higher than GHA and 
GPA films, most especially for cyclohexane. 

GPA had the lowest absorption capacities in all the tests; 
this could possibly be due to the increase of hydrophilicity 
— based on the existence of more nitrogen molecules in 
n-dodecylamineohexane — of the composite material. 
The GDA displays excellent absorption capacities ranging 
from 34 to 64 times its own weight for all the absorbates 
used. Significantly, the GDA showed greater absorption 
capacity than many sorbents in previous reports, such 
as polymers (5-25)9, polydimethylsiloxane sponge (four 
to 11 times)10, reduced GO foams (five to 40 times)11, and 
chitin sponge (30 to 60 times)12. The absorption capacity 
in other materials is higher than that of the GDA, such 
as graphene modified foam (60 to 140 times), cellulose 
nanofiber aerogel (106 to 312 times)13, and ultra-flyweight 
aerogel (215 to 913 times)14. 

The simple, low-cost and easily large-scale fabrication 
method make GDA an excellent candidate to be used as 
an absorbent for oil spill cleanup and organic pollutants. 

Oil-Water Separation

The oil-water separation test of the prepared materials 
was performed by dipping the material in the oil or 
solvent/water mixture (5 mL, 45 mL). As the materials 
approached the mixture, it selectively and quickly ab-
sorbed the floating solvent or oil on the surface of the 
water, leaving behind water in the system. The material 
tended to float on the surface despite being immersed 
by an external force to achieve higher separation effi-
ciency, Fig. 5. 

The graphene modified materials instantly absorbed 

the organic phase once the material was in contact with 
the oil or the solvent. The differential affinity to the 
organic layer (oil or solvent phase) clearly showed that 
the materials had oleophilic and hydrophobic character-
istics, where the organic solvent or oil could flow into the 
material pores easily and rapidly. This clearly showed 
the superhydrophobic nature of the GDA. 

The oil could be recovered by a simple mechanical 
squeezing method and the materials could be reused 
repeatedly. The efficiency of separation of the hydro-
phobic and oleophilic GDA for the organic solvents and 
oil is high. 

Further Evaluation of the GHA and GDA Material

To evaluate and measure the absorbability of the GHA 
and GDA material, experiments were conducted sever-
al times with three different hydrocarbons — hexane, 
heptane, and octane — on the same material sample. 

The procedure that was used is as follows: 

1. The initial weight of the material was measured. 

2. The material was then dipped in a mixture 20:2 of 
dyed water and hydrocarbon for several minutes until 
the hydrocarbons were fully adsorbed. 
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Fig. 4  The absorption capacity (weight gain) of all the modified graphene materials 
            in the oil and in the organic liquid media.
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3. The final weight of the material and time of adsorption 
was noted.

4. Then the material goes through the desorption process 
from the hydrocarbon.

5. The material initial weight should be measured again 
to make sure that there are no hydrocarbons left. 

6. Repeat from step 2 with a different hydrocarbon. 
The material showed that high hydrocarbon absorptivity 

and a 100% water rejection can adsorb up to three times 
its initial weight of hydrocarbons from water within a 
short time. The material can then be easily recycled 
for reuse. 

Table 1 lists the test results for the absorption capability 
with hexane, heptane, and octane.

Conclusions
In this article, three stable and robust types of graphene, 
modified with linear alkylamines, including n-propyl-
amine, n-hexylamine, and n-dodecylamine, were char-
acterized and their performance evaluated by absorption 
and oil water separation tests.

The absorption capacity is greatly dependent on the po-
rosity of the materials. Therefore, the material with higher 
hydrophobicity will absorb organic liquid more readily 
and will have higher oil/water separation efficiency. 

• GDA oil absorption is four to 10 times higher than 
GHA and GPA, due to its higher porous structure 
and its superoleophilic and superhydrophobic nature.

• The GDA displays excellent absorption capacities 
ranging from 34 to 64 times its own weight for all 
the absorbates used.

• The GPA showed the lowest absorption capacity in 
all tests.

• An oil-water separation test was conducted on the 
three graphene modified materials, whereby the 
organic pollutant (oil) in the water was instantly 
absorbed. 

• Oil can be recovered from the materials by using the 
mechanical squeezing method while the material can 
be reused for oil from water absorption.

• The efficiency of separation of the hydrophobic and 

oleophilic GDA for the organic solvents and oil is 
high — up to 99.9% — while in the GHA and GPA, 
it is up to 98% and 83%, respectively, depending on 
the organic pollutant. 
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A variety of clean out methods have been developed in the past to remove scale and sand fill accumula-
tion from the wellbore section to restore the well’s potential. The success rate for such an operation is 
impacted by multiple factors, such as fluid properties, limited annular velocities, particle size, reservoir 
pressure, and wellbore diameter. In addition, this process commonly involves applying excess hydrostat-
ic pressure on the formation to circulate wellbore fluids, which can result in lost circulation and formation 
damage. 

This article will share the technical details along with the field results for a novel vacuuming system 
with integrated real-time data, which can be operated in three different modes, to remove both undesir-
able liquids and solids. The process involves pumping a low-cost clean out fluid down the internal string 
through a jet pump and venturi nozzle assembly. A localized pressure drawdown is created at the bot-
tom-hole assembly (BHA), drawing wellbore liquids and solids into the return flow, and the entrained 
flow is returned up the outer coiled tubing (CT) string to the surface.

Several clean out jobs have been successfully performed in the field using this technique. The use of 
empirical correlations have been developed and incorporated into an existing proprietary solids transport 
computer algorithm, which played a vital role in the optimization of the hole cleaning process. Post-job 
results will be discussed in this article, including the fill diagnostic process, an assessment of the clean 
out method, the job design, selection of fluids, CT BHA tools, job execution, field experience, and post-
clean out performance evaluation. 

This article will describe a reliable alternative combining an integrated vacuuming system and real-time 
monitoring that can effectively remove scale and sand fill accumulation caused by excessive sand pro-
duction and fines migration in a large wellbore diameter, where annular fluid velocity and lifting efficien-
cy is a major challenge.

The novelty of this approach is its ability to create a wellbore vacuuming system that can provide effi-
cient lifting capabilities while eliminating the need for high cost fluids and large quantities of nitrogen in 
deep horizontal extended reach wells. Recommendations and lessons learned from several field cases are 
also shared to further improve the clean out process.

Improved Sand Fill Cleanout Utilizing an Integrated 
Vacuuming System and Real-Time Monitoring in 
Horizontal Extended Reach Wells
Hussain A. Almajid, Alaa S. Shawly and Usman Ahmed

Abstract  /

Introduction
Sand production is a common problem faced by many oil and gas producers and water injectors worldwide. 
Sand migration into the wellbore often results in a reduction of production or injection rates. Several clean out 
methods have been developed over the decades employing a number of different techniques, incorporating high 
circulation rates, special circulating fluids, wiper trips or reverse circulation to remove solids from the wellbore 
and up to the surface. 

Many of these conventional sand clean out methods often require the use of high circulation rates, which applies 
excessive downhole pressure on the formation and could result in lost circulation return, especially in pressure 
depleted reservoirs. The conventional solution to overcome depleted hydrostatic pressure has been to include 
nitrogen to reduce fluid density, and thereby decrease the hydrostatic head; however, this necessitates a very 
specific job design and execution and can require large amounts of liquid nitrogen in the case of horizontal wells, 
possibly jeopardizing the success rate of such operations.

Vacuuming Process Mechanism 
The evolution of wellbore vacuuming technology has brought a unique solution to this problem. The sand/well 
vacuuming technology has been developed and proven by field operations worldwide to clean out wellbores with 
a low bottom-hole pressure (BHP). The sand/well vacuuming system consists of a specialized downhole jet pump 
connected to a concentric coil tubing (CCT) string, Fig. 1. The clean out fluid is circulated down the central string 
and returned via the CCT annulus1, 2. 

Delete CYAN border!
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The action of power fluid passing through the jet pump 
and venture assembly essentially vacuums the formation 
liquid and fill out of the wellbore, and this combined flow 
of sand/fluid returns up the CCT annulus without placing 
any additional hydrostatic pressure on the formation. 
The advantage of this system is that the velocities of the 
return fluid are relatively high due to the small annular 
areas involved, therefore, the sand/return fluid is not 
allowed to settle out while circulation is maintained.

The main components of a jet pump are the power 
nozzle, throat, and diffuser, Fig. 2. High-pressure fluid 
at a low velocity passes through a nozzle into a throat, 
where the change into a high velocity and low-pressure 
creates a Venturi effect3, 4. This jet pump has been op-
timized to accommodate variation in both intake rates 
and drive pressures, based on the fluid rates attainable 
through the internal CT string, thereby creating a system 
that does not rely on the formation hydrostatic pressure 
during the sand/wellbore vacuuming process. 

Although the jet pump can be driven with a variety of 
different liquids, a mixture of formation water with oil 
dispersant and friction reducer is best suited for optimum 
lifting applications. Also, there is no need to circulate 
nitrogen to reduce the hydrostatic pressure since there is 
no hydrostatic pressure acting on the formation during 
the sand/well vacuuming clean out process. 

This tool is operated in three modes, which are sand 
removal, fluid recovery, and forward jetting mode. In 
the sand removal mode, a portion of the pumped fluid 
is diverted through the external, front, and rear facing 
swirl jets to fluidize the sand for easier removal, Fig. 
3. During the fluid recovery mode, or well vacuuming 
mode, the external swirl jets are shut off, resulting in 
an increased pressure drop across the nozzle throat and 
greater wellbore fluid being unloaded from the well.

While in the forward jetting mode, the pumped fluid 
flows through the forward nozzles, creating a higher 
jetting velocity to break consolidated sand bridges or 
to displace treatment fluids into the wellbore, Fig. 4. 
Consequently, the tool can be alternated between these 
modes by pressure cycling as many times as necessary un-
til all fill has been recovered from the wellbore. Typically, 

the tool would be run in the hole (RIH) using the sand 
removal mode initially while entering into the fill ac-
cumulation and then the clean out process is switched 
to the fluid recovery mode at the toe of the well while 
pulling back through the horizontal section. 

This sand/well vacuuming system provides a localized 
pressure drawdown at every point in the wellbore that 
the tool passes, which allows for an effective sand re-
moval in the sand vacuuming mode as well as removing 
any accumulated mud filter cake deposits in the well 
vacuuming mode. Memory gauges can be run as part 
of the bottom-hole assembly (BHA) to record downhole 
parameters, such as pressure and temperature. This data 
can be used to perform pressure buildup analysis and 
evaluate the productivity index along the entire hori-
zontal treated section, thereby allowing us to identify 
zones with severe formation damage, and consequently, 
the operator may choose to perform on-site treatment 
stimulation and optimization. 

Although the cleanup treatment with the CCT does 
not prevent the sand deposition in horizontal wells, it 
does considerably prolong the period between recurrent 
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Fig. 1  A process illustration for the CCT with a specialized jet pump. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2  The main components for the CCT downhole jet pump. 
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Fig. 1  A process illustration for the CCT with a specialized jet pump.

Fig. 2  The main components for the CCT downhole jet pump.
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workover necessities. The average time before reoccur-
rence of workover activity due to the sand production in 
horizontal wells after they have been treated immediately 
after drilling is about two times greater than for the 
wells that have not been treated5, 6. There is a longer 
life expectancy of the lifting equipment and tubulars 
in cleaned up wells.

Well Completion Details 
Well-A was drilled in an unconsolidated sandstone for-
mation with heterogeneous rock properties. The well 
was developed as a water injector to enhance sweep 
efficiency and oil recovery. The well was completed with 
9⅝” casing extending from the surface up to an inter-
mediate depth point and 7” casing from 9⅝” end up to 
the top of the injection interval. Meanwhile, the lower 
completion consisted of a 4½” perforated liner across 
the entire injection interval up to the plug back total 
depth (PBTD). Consequently, sand accumulation/influx 
from the reservoir would occasionally occur when the 

well was shut-in. As a result, the well performance will 
be impacted, as observed in the drop-in injection rate 
and increase in injection pressure. 

Sand/Well Vacuum Simulation Model 
A detailed planning and review process was implemented 
prior to commencing clean out operations in the selected 
wells completed with large diameter casings. A computer 
software simulator has been developed to integrate the 
correlations for sand concentration and hole cleaning 
time in the annulus of the CCT string. A computational 
approach using calculated volumes was adopted and 
empirical formulas were applied to predict the pres-
sure, fluid velocities, and solids transport efficiency. 
Fluid properties and flow rates are used to predict the 
solids removal rate, which is then integrated in time to 
give the solids concentration of each control volume7, 8. 

The simulator allows the user to predict the time history 
of in situ solids concentrations along the CCT annulus 
and the hole cleaning time for a given operational case. 
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Fig. 3  A demonstration of the tool operation in the sand vacuuming mode.  
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
Fig. 4  A demonstration of the tool operation in forward jetting mode. 
 
 
 
 
 

 

 

  
 

 
  

 
 

Fig. 3  A demonstration of the tool operation in the sand vacuuming mode.

Fig. 4  A demonstration of the tool operation in forward jetting mode.
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This is an essential tool for field engineers to successfully 
design and execute the sand/well vacuuming opera-
tions. The model allows for on-site real-time monitoring 
of downhole pressure and temperature readings. The 
model also provides the overall sand/well vacuuming 
fluid dynamics and aids in optimizing and predicting 
the mechanical performance envelope, operating rates, 
pressures, velocities, sand pickup rates, and CCT stress 
conditions. 

The pull out of hole (POOH) speed, backward jetting 
velocity, and distance between the tool intake and back-
ward nozzles are all key parameters to ensure high clean 
out efficiency. Once the maximum distance between 
the tool intake and backward nozzles is exceeded, the 
pumping fluid will not be able to fluidize the sand bridges 
and receive them at the intake due to the longer distance 
it takes for the sand to travel before it reaches the intake. 
Conversely, if the distance between the tool intake and 
backward nozzles was too small, then the sand particles 
will bypass the tool intake screen and they will be left 
behind in the wellbore. Consequently, maintaining the 
required speed while POOH is key to ensure an efficient 
hole cleaning process by allowing ample time for wellbore 
clean out at each stage. 

Once sand particles enter the sand vacuuming BHA, 
the particles are transported to the surface through the 
annulus of the CCT string. Comprehensive simulations 
must be performed to accommodate for the velocity, 
deviation angle, particle size, density, fluid density, and 
viscosity, thereby ensuring that these solids are trans-
ported all the way to the surface. 

Job Design and CCT Size Selection 
A key element in the CCT size selection process is to 
maximize penetration and reach depth into the well-
bore, due to the large wellbore diameter casing/open 

hole section for these extended reach horizontal wells. 
The selected CCT was a 0.095” wall thickness, 1” inner 
string by 0.156” wall thickness, and a 2” outer string 
with a total length of X682 ft. This large outer CCT 
size allows for additional lateral coverage and higher 
circulation flow rates while increased boost pressure are 
achievable down the smaller size inner string, thereby 
ensuring that all returning fluids and solids are not lost 
along the long annular flow path. 

The fluid system utilized for the clean out was a wa-
ter mixed with a concentrated friction reducer fluid for 
extended CCT reach. The selected power fluid had an 
excellent shear thinning property that exhibited low vis-
cosity when pumped through the CCT and high viscosity 
with strong carrying capabilities when it is subjected to 
a low shear rate. The power fluid pumping rate through 
the 1” inner string averaged 0.4 bbl/min at 5,000 psi 
injection pressure. 

The jet pump nozzle and throat size were optimized 
to create adequate intake suction while providing stable 
return pressures up the CCT annulus. It was designed 
to avoid losing the fluids into the formation and was 
achieved on location by monitoring fluid pumped vs. 
fluid return volumes during sand recovery operations. 
If a 1:1 ratio was not maintained, the vacuum tool would 
be switched from sand vacuum mode to well vacuum 
mode to recover the fluid lost to the wellbore.

Due to the low pumping rates in the system, the solids 
inflow into the vacuum tool must be controlled to ensure 
continuous surface returns. Typical RIH speeds for the 
operation were between 1 ft/min to 2 ft/min, maintain-
ing solids intake of 1% to 2% by mass. Fluid velocities 
in the concentric annulus were approximately > 50 in/
sec, which exceeds the minimum for solids transport. 

Table 1 lists the CCT size selection with the corre-
sponding pumping and suction rates. 

CCT 
Size 
(in)

Pump 
Pressure 

(psi)

Wellhead 
Pressure 

(psi)

Switch 
Orifice 

Size (in)

Bypass 
Orifice 
to Swirl 
Nozzles 

(in)

Main 
Nozzle 
Size (#)

Throat 
Size (#)

Suction Rate 
 (L/min – 

bpm)

Main Nozzle 
(L/min – 

bpm)

Swirl 
Nozzles  
(L/min – 

bpm)

1 × 2 3,000 20 0.221 0.08 4 3 20.00 – 0.13 33.03 – 0.21 19.81 – 0.12

1 × 2 3,000 20 0.221 0.08 5 4 20.00 – 0.13 37.49 – 0.24 18.51 – 0.12

1 × 2 3,000 20 0.221 0.08 6 6 24.00 – 0.15 40.02 – 0.25 17.72 – 0.11

1 × 2 3,000 600 0.221 0.08 4 2 18.00 – 0.11 37.94 – 0.24 15.11 – 0.10

1 × 2 3,000 600 0.221 0.08 4 3 28.00 – 0.18 35.22 – 0.22 16.00 – 0.10

1 × 2 3,000 600 0.221 0.08 5 4 31.00 – 0.20 40.18 – 0.25 14.34 – 0.09

1 × 2 3,000 600 0.221 0.08 6 5 33.00 – 0.21 43.04 – 0.27 13.29 – 0.08

1 × 2 5,000 600 0.221 0.08 7 5 28.00 – 0.18 64.52 – 0.41 16.15 – 0.10

1 × 2 5,000 600 0.221 0.08 7 6 45.00 – 0.28 63.09 – 0.40 16.73 – 0.11

Table 1  CCT size selection with the corresponding pumping and suction rates.
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Operational Safety Precautions 
CT fatigue is a major concern when planning conven-
tional sand clean out operations, especially with large 
diameter CT strings. This issue is not a major concern 
for the CCT sand/well vacuum mode since the outer 
CT experiences minimal surface pressure created by 
the returned flow path. Subsequently, its fatigue life is 
extended beyond the normal fatigue life of a typical 2” 
CT work string. Conversely, the inner string is exposed 
to a relatively high internal pressure. Due to its smaller 
diameter, the 1” CT has a fatigue life that is four times 
that of the 2” outer string in this operation.

Well-A is drilled and completed into a formation zone 
with low hydrocarbon gases present. As such, addition-
al precautions were taken to divert any produced gas 
from the CCT annulus to the surface testing and flare 
systems for gas handling, Fig. 5. Further entrainment 
of produced gas can be stopped at any time by shutting 
down the power fluid pump. This will remove the con-
centric annulus boost pressure, allowing fluids from the 
CCT to essentially kill the well. Additionally, pumped 
fluid could be diverted down the inner string, the CCT 
annulus, the CCT by production tubing annulus, or any 
combination to quickly displace any produced gas. To 
further mitigate this situation, a combination shear/
blind ram was incorporated in the well control stack 
as a last resort. 

Several formal risk assessments were completed re-
garding personnel and equipment safety as well as en-
vironmental controls. Some items of note are:

• Temporary wind walls installed around the platform 

deck to decrease liquid splatter by wind gusts.
• Fluid containment pads surrounded the wellhead 

and CT equipment.
• A containment system was installed around the CT 

injector to prevent any lubricant or other fluids from 
reaching the Cook inlet.

• Land operations would have drip pans installed 
under all units.

Job Execution 
Previous clean out attempts using a conventional sand 
removal method proved to be ineffective in Well-A due to 
large downhole completion design and low reservoir pres-
sure that have made the lifting process very challenging. 
This well is completed with a 4½” (internal diameter (ID) 
is 3.958”) screen liner from top of the injection interval 
up to PBTD and a 7” casing (ID is 6.276”) from a 9” 
casing shoe up to the top of the injection interval. The 
main challenge encountered in the previous conventional 
clean out methods was that the annular velocity required 
to lift the sand all the way to the surface could not be 
sustained inside the large ID of the 7” casing, which 
deemed the clean out ineffective. The advantage of the 
CCT sand/well vacuum mode is that the annular space 
between the 2” outer string and 1” inner string is small 
enough to lift the sand to the surface. 

During the job, the CCT BHA was alternated between 
the sand vacuum mode and well vacuum cleaning mode 
up to the maximum reach depth at PBTD. At this stage, 
clean out attempts were carried out by utilizing both 
the CCT BHA and by pumping different mixtures of 
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Nozzle 
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clean out fluids, such as mutual solvent fluids and 15% 
HCl acid. This procedure was repeated in steps and by 
allowing the clean out fluids to soak in the well and break 
the hard sand bridge prior to attempting RIH again until 
a maximum reach depth at PBTD, Fig. 6. Meanwhile, 
the testing was getting sand up to 60% by weight, which 
confirmed that the 7” liner was being completely cleaned. 
A sand filtration system was installed in the upstream 
on the choke manifold, but it was bypassed during the 
operation as it was inducing additional back pressure 
on to the system, which negatively impacted the lifting 
process. The fluid return rates were below the manu-
facturer’s minimum limit and the small particle size of 
the solids made it difficult to detect.

Overall, the conducted vacuuming treatment job was 
effective in removing 500 ft of sand fill accumulation 
and improved the well productivity index with the total 
recovered sand column from the 7” liner while minor 
precipitates were detected during flow back operations. 
The well was put on injection following the treatment, 
and performance analysis showed a steady increase in 
injection equivalent to 50% improvement prior to treat-
ment implementation. 

Sand/Well Vacuuming Process Operational 
Enhancements
The feasibility and success rate of wellbore vacuuming 
operations on a depleted well utilizing CCT depends on 
multiple parameters, including the downhole tool, utilized 
equipment, operational planning, and field personnel 
experience. The following are a list of best practices 
to be considered for future sand/wellbore clean outs 
utilizing CCT:

1. A sophisticated computer simulator must be used to 
select the proper tool setup of CCT string size and 

optimize the complete sand/well vacuuming process. 
The software can be utilized to predict various im-
portant parameters for the operation such as injection 
pressure, surface flow rates, sand and fluid suction 
rate, external jetting rate, return rate and sand load 
in the CCT annulus, and inlet and outlet pressure of 
the jet pump, and the CCT RIH and POOH speed.

2. Monitoring the injection pressure, injection flow rate, 
and return rate is crucial to ensure that the downhole 
jet pump is working properly. If the power nozzle or 
throat is worn out, the jet pump loses suction rate, 
and therefore, the return rate would drop off consid-
erably for a given operating condition. In some cases, 
downhole junk material or wellbore scale may block 
the intake screen causing the suction rate to drop off 
as well. 

3. If the liquid return rate is less than the injection rate for 
a while in the sand vacuuming mode, it may indicate 
that the fluid is being lost into the well. The vacuum 
tool should be switched from the sand vacuuming 
mode to the well vacuuming mode to recover the 
lost fluids.

4. Wellbore conditions near the top of the fill can be 
verified by running the CCT in hole in using well 
vacuuming mode or with no circulation. Since there 
is no external forward jetting near the end of the 
BHA, the tool will prevent movement of the CCT in 
hole as soon as any significant amount of solids are 
encountered. In addition, RIH without circulation 
until reaching the top of the fills would prevent the 
nozzle/throat pre-wear out.

5. A proper mechanism for volumetric measurement of 
the recovered sand at the surface must be implemented 
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to accurately measure the return volume and deter-
mine if the circulation rates are matching with the 
return rate, and consequently identify if any fluid is 
being lost into the formation.

6. A CCT mill and motor can be run as a contingency 
plan in case downhole obstructions are encountered 
and it is required to extend the reach depth into the 
wellbore. Similarly, chemical dissolution alternatives 
may be used to dissolve hard bridge material provided 
that proper surface testing equipment are available 
to treat the return fluids. 

7. Fluid sampling and downhole memory gauges are 
valuable tools in the evaluation of the production 
profile along the wellbore and as a diagnostic tool in 
case of potential well problems. 

Conclusions 
This article discusses a downhole vacuuming technol-
ogy application in low reservoir pressure, large casing 
diameters for sand removal operations, and demonstrated 
how to effectively remove sand fill accumulations from 
challenging wellbore conditions. The engineering chal-
lenges, best practices and lessons learned from these 
vacuuming operations are summarized. Post-job analysis 
indicates that this technology is a viable and effective 
means to remove sand fill from wellbores with large 
completion and low BHP. 

The following points summarize the lessons learned, 
cultivated from the implemented field applications.

1. The downhole vacuuming technique proved to be 
a successful method to efficiently remove sand fill 
accumulations from the low BHP wells and large 
diameter completion. The final assessment for the 
developed tool application concludes that it can be 
operated in low BHP scenarios with minimal pump 
wear.

2. The sand/well vacuuming process provides an effec-
tive solution to remove sand fill accumulation without 
creating any overbalance pressure on the formation 
that could result in fluid loss, thereby creating for-
mation damage. 

3. A modified design with a high-pressure drop, rota-
tional jetting tool and a downhole motor with a mill 
can be combined in the sand vacuuming BHA to 
increase penetration into the formation whenever 
hard sand bridges are encountered. 

4. Utilization of water mixed with oil dispersant and 
friction reducer helped to extend CCT reach depth 
in extended horizontal section wells. 

5. This vacuuming tool can be alternated between sand 
vacuuming and forward jetting as many times as need-
ed during the operations, depending on the wellbore 
conditions and rigidness of fill material to facilitate 
breaking sand bridges and to properly clean out the 
well. 

6. Using updated software with real-time field data, and 
considering the parameters involved in the sand/

well vacuuming process, can help field engineers to 
design, optimize, and execute the vacuuming process 
efficiently.
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