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High gas volume fractions (GVFs) decrease the pressure boosting capacity of electric submersible pumps 
(ESPs). To prevent this, advanced gas handlers, helico-axial pumps, etc., may be installed upstream of 
the pump, but this equipment can be expensive. This study presents the results of testing different im-
peller combinations up to 90% intake GVF. The findings present a potential economical option for 
managing high GVF flows in ESP operation, beneficial to boosting and maximizing production from a 
field asset.

The pump used was a two-stage, radial-type centrifugal pump with a 3.78” impeller diameter operat-
ing at 3,400 revolutions per minute (rpm). Three impeller pairs were used: P0 (no hole in any impeller 
blades), P1 (holes only in the second stage impeller blades), and P2 (holes in the first and second stage 
impeller blades). Water flow rates were fixed from 75 barrels per day (bpd) to 550 bpd, and air flow rates 
varied to give intake GVFs between 10% and 92% for average fluid temperatures of approximately 25 
°C. The corresponding differential pressures across the pump were measured and compared to one 
another.

The results showed that for all impellers, the differential pressure across the pumps decreased with an 
increasing GVF. At 75 bpd, pump P0 attained zero differential pressure at approximately 72% GVF. 
The impellers in P1 and P2 were able to extend its operation to reach zero differential pressure at 90% 
and 90% GVF, respectively. When the liquid flow rate was increased to 275 bpd, the differential pressures 
in P0, P1, and P2 reached zero at approximately 36%, 38%, and 41%, respectively. Increasing the liquid 
flow rate even further to 410 bpd, results in zero differential pressure at approximately 26%, 30%, and 
29% GVF for P0, P1, and P2, respectively.

The general trend is that the GVF at which the differential pressure reaches zero decreases with an 
increasing liquid volume flow rate. At lower liquid volume flow rates, holes drilled in the impeller blades 
significantly extend the pump’s GVF handling capability by homogenizing the flow at the inlet of the 
centrifugal pump. Since the gas handling performance of a radial-type pump was enhanced, it may be 
concluded that the performance will be even more favorable for a mixed flow or axial flow pump, espe-
cially at higher rotational speeds and intake pressures than in these tests.

This study highlights the importance of pursuing economical alternatives to extend the performance 
envelope of a centrifugal pump operating in high GVF flows. The findings from this work imply that 
with appropriate modifications to ESP impellers, their operating envelopes may be increased using 
cost-effective methods. This opens opportunities for stakeholders to maximize production from field 
assets with very high gas content, and increase the economic bottom line for the operator.
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Introduction
Electric submersible pumps (ESPs) are artificial lift systems used in the oil and gas industry to produce fluids from 
weak/dead wells or increase production from naturally producing wells. The ESP pumping section consists of 
multiple stages, each made up of a rotating rotor (or impeller) and a stationary diffuser. Kinetic energy is imparted 
to the fluid by the rotors, and the kinetic energy is later converted to pressure head by the diffusers. For liquid 
pumping operations, the sum of the pressure rise of each stage is the total pressure rise or pressure boost by the ESP.

ESPs operate satisfactorily when pumping only liquids or liquids with very low amounts of dissolved gas. When 
local pressures in a well drop below the bubble point pressure, these dissolved gases come out of solution and exist 
as free gas with a given gas volume fraction (GVF). The GVF may be defined as the volume of free gas to the total 
volume of free gas and liquid at a given pressure and temperature. For conventional ESPs, the pressure boosting 
capacity degrades rapidly beyond a certain intake GVF value resulting in lower fluid production. In very severe 
scenarios, the ESP is unable to lift the fluids to the surface, resulting in gas lock1. 

The susceptibility to gas lock also depends on whether the pump geometry is radial flow, mixed flow, or axial 
flow. Each pump geometry is classified by a specific speed, which for radial flow, mixed flow, and axial flow pumps 
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is: 360 to 5,160, 1,800 to 8,260, and 8,260 to 20,640, 
respectively2. Radial flow pumps tend to have the highest 
susceptibility to gas lock, whereas axial flow pumps have 
the least gas lock susceptibility. This is mainly due to 
the smaller flow area, as well as the fluid inlet/outlet 
directions in radial pumps compared to axial flow pumps.

To delay the onset of gas lock and increase the operat-
ing envelope of ESPs pumping gas-liquid mixtures, gas 
handling devices such as gas separators, gas handlers, 
or multiphase pumps may be installed just upstream of 
the pumping section. Gas separators remove gas from 
the gas-liquid mixture, whereas gas handlers and multi-
phase pumps handle the gas-liquid mixture by facilitating 
accumulated gas entrainment and mixing to delay gas 
lock in the ESP. Although ESPs alone can handle intake 
GVFs up to 20%, gas handlers and multiphase pumps 
can increase the intake GVF handling up to 45% and 
75%, respectively3.

Although the mentioned gas handling devices are used 
in field applications, alternative methods of mixing are 
being postulated to facilitate gas handling in ESPs. Floyd 
(2008)4 disclosed a homogenization device with a central 
hub and numerous posts extending from the central 
hub. The system may be used within gas separators or 
pumping assemblies. Another homogenization method 
was disclosed by Gahlot et al. (2017)5. The system consists 
of a diffuser with ports as well as passages through the 
impeller (or rotor) hub. These ports and passages allow 
for recirculation of the pumped fluids.

More recently, Badr et al. (2021)6 disclosed a potential 
method of homogenizing the fluid in ESPs handling 
gas-liquid mixtures. It involves drilling holes and/or slots 
(both inline and in staggered configurations) through the 
vanes (or blades) of the impellers (or rotors). The rationale 
is to enhance mixing within the rotor channels from 
the pressure side to the suction side. The current work 
shows the results from testing one of the configurations 
in their disclosure.

This study presents the physical tests of a radial flow 
pump geometry operating at about 3,400 rpm. The goal 
was to modify the architecture of the baseline pump, 
and then test these modified prototypes to determine the 
magnitude of intake GVFs at which they will gas lock. 
Such information provides design knowledge, which can 
be incorporated in a field prototype pump as a homoge-
nizer to extend the gas-liquid operating envelope of an 
ESP system and increase the economic bottom line of 
a field asset for the operator.

Prototypes Tested
The prototypes tested were of the radial flow pump 
design with two stages each, with impeller diameters 
of 3.78”. Each impeller had four vanes (or blades), and 
each vane had an arc length and width of 2.362” and 
0.1574”, respectively. A commercial water pump with 
these features, and which operates at rotational speeds 
up to 3,400 rpm, was taken as the baseline pump, and 
designated P0 in this study. Modifications were made 
to two other identical commercial water pumps to in-
corporate homogenization features and then ascertain 
which prototype has better gas handling capabilities.

In the first homogenizer prototype, the first stage had no 
holes in its impeller vanes. For the second stage impeller, 
seven 0.079” holes were drilled in each vane. The holes 
were equidistant from adjacent holes, and at the middle 
of each impeller vane, Fig. 1a. This homogenizer proto-
type is denoted P1. The second homogenizer prototype 
had holes in both impellers, Fig. 1b. This homogenizer 
prototype is denoted P2.

To quantify the degree of the impeller vane perforation 
for each of the three prototypes, a vane perforation ratio 
was used. This is defined as the total hole area in the 
impeller vanes in each prototype divided by the total 
impeller vane area in each prototype configuration. Based 
on this definition, and information provided previously on 
the holes and impeller vanes, the vane perforation ratio 
for P0, P1, and P2 were 0%, 4.6%, and 9.2%, respectively.

Test Setup and Procedure
Figure 2 is a schematic layout of the setup used to test 
prototypes P0, P1, and P2, with air and water as the 
operating fluids. Prior to initial operation of the system, 
flow control valves, (FCV1 and FCV2) are open, whereas 
FCV3 is closed. The check valves, (CV1 and CV2) pre-
vent fluids from entering and flowing upstream of the 
waterline and airline, respectively. The initial operation 
starts by turning on the water pump and prototype (P0, 
P1, or P2), which causes water to be drawn from the water 
tank, flow through the water flow meter, and pumped into 
the separation tank. The separation tank is connected to 
the water tank via a drain line, which enables the water 
to flow by gravity from the separation tank to the water 
tank. The water in the system is allowed to recirculate 
for some time before air is introduced into the system.

The air supply is provided by the air compressor, 
whereas a pressure regulating valve allows for adjusting 
the air pressure into the system. With FCV3 open, air 
flows from the compressor through the air flow meter 
and mixes with the water. The air-water mixture flows 
into the test prototype and into the separation tank. In 
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Fig. 1  Photographs of the impellers in the two homogenizer prototypes tested.
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the separation tank, the water and air are separated by 
gravity. The air is discharged back to ambient, and the 
water drains by gravity from the separation tank into 
the water tank, from where it is recirculated though 
the system.

Prior to taking measurements, FCV1 was adjusted to 
give a constant water volume flow rate, whereas FCV3 
was adjusted to vary the air volume flow rates at the 
intake of the test prototypes. The flow conditions were 
allowed to stabilize before measurements were taken for 
each data point. The average fluid temperature during 
the tests was about 25 °C. For a given water volume 
flow rate, the corresponding air volume flow rates were 
measured, as well as the intake pressure (from pressure 
gauge (PG2)) and differential pressures (from PG3 and 
PG2) for the prototype being tested. The corresponding 
air mass flow rates and intake GVFs were also computed 
from this data. The air volume flow rates were increased 
until the pressure boost (or differential pressure) across 
the prototype under test was below zero, which implies 
the pump was in a gas lock condition.

The overall test condition can be considered isothermal 
given the fairly constant fluid temperature due to the 
relatively large mass flow rate of liquid compared to gas. 

The average fluid properties, list of test and measurement 
equipment, as well as flow rates/ranges during the test 
are presented in Tables 1, 2, and 3, respectively. 

Results
Several observations were made following analysis of 
the test data. For clarity, the findings are discussed in 
categories related to the effects of flow parameters and 
the effects of the vane perforation ratio on the pump 
pressure boost and performance.

Effect of Flow Parameters
Figure 3 shows the variation of pump pressure boost 
with gas mass flow rate for P0 at liquid volume flow rates 
of 75 barrels per day (bpd), 140 bpd, 275 bpd, and 410 
bpd. The plots show that for a given liquid volume flow 
rate, as the gas mass flow rate is increased, the pressure 
boost from P0 decreases. At a specific gas mass flow 
rate, the pressure boost by the pump equals zero. This 
scenario, which signifies gas lock conditions, is typical 
of pump behavior at a high amount of gas1.

The variation in liquid volume flow rate has an effect 
on the gas handling capability of the pump. The figure 
shows that over the range of gas mass flow rates, the 
pressure boost by the pump at the lowest liquid volume 

Fig. 2  A schematic of the test layout used to test prototypes P0, P1, and P2.

Average Air Temperature Average Water and Air 
Temperature at Prototype Inlet Average Water Density

25 °C (77 °F) 25 °C (77 °F) 997 kg/m3

Table 1  The average fluid properties during the test.
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flow rate tends to have a wider range of non-zero values 
compared to conditions at higher liquid volume flow 
rates. A similar trend was also observed for prototypes 
P1 and P2, Figs. 4 and 5, respectively.

Figures 6 to 8 show the pressure boosts from the three 
prototypes when plotted against intake GVF based on 
their corresponding intake pressures. The plots show that 

for a given liquid volume flow rate, the pressure boost 
decreases with increasing GVF. This is similar to the 
trend in the variation with gas mass flow rate discussed 
previously as well as in literature. The performance of 
the prototypes with increasing liquid volume flow rate is 
noticeable. The liquid flow rate at 75 bpd has the widest 
range of non-zero pressure boost values, whereas the 410 

Equipment Range Accuracy

Water Flow Meter
0 – 15 liters per minute

± 1.0%
8 – 132 liters per minute

Air Flow Meter

0 – 4 standard cubic feet per 
minute (scfm)

± 2.0% FS
0 – 8 scfm

0 – 20 scfm

0 – 40 scfm

Pressure Gauges
-15 – 15 psig

± 0.25%
0 – 30 psig

Temperature Gauges -20 °C – 55 °C ± (0.04% (Reading) + 0.3 °C)

Table 2  A list of the test and measurement equipment.

Prototype Liquid Volume Flow Rate (bpd) Gas Mass Flow Rate Range  
(liters per minute/day)

P0 75, 140, 210, 275, 345, 410, 480, 550 11 to 467

P1 75, 140, 210, 275, 330, 345, 410, 480 7 to 523

P2 75, 140, 210, 275, 345, 410, 480, 550 15 to 544

Table 3  The test flow rates.
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Fig. 3  The variation of pump pressure boost with gas mass flow rate for prototype P0. 
 
 

 
 
Fig. 4  The variation of pump pressure boost with gas mass flow rate for prototype P1. 
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Fig. 3  The variation of pump pressure boost with gas mass flow rate for 
prototype P0.
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Fig. 3  The variation of pump pressure boost with gas mass flow rate for prototype P0. 
 
 

 
 
Fig. 4  The variation of pump pressure boost with gas mass flow rate for prototype P1. 
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Fig. 4  The variation of pump pressure boost with gas mass flow rate for 
prototype P1.
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Fig. 5  The variation of pump pressure boost with gas mass flow rate for prototype P2. 
 

 
 
Fig. 6  The variation of pressure boost with intake GVF for prototype P0. 
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Fig. 5  The variation of pump pressure boost with gas mass flow rate for 
prototype P2.
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Fig. 5  The variation of pump pressure boost with gas mass flow rate for prototype P2. 
 

 
 
Fig. 6  The variation of pressure boost with intake GVF for prototype P0. 
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Fig. 6  The variation of pressure boost with intake GVF for prototype P0.

Fig. 9  Comparing the gas mass flow rates at gas lock for the three tested 
prototypes.

Fig. 8  The variation of pressure boost with intake GVF for prototype P2.

Fig. 7  The variation of pressure boost with intake GVF for prototype P1.
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Fig. 7  The variation of pressure boost with intake GVF for prototype P1. 
 
 
 

 
 
Fig. 8  The variation of pressure boost with intake GVF for prototype P2. 
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Fig. 10  Comparing the intake GVFs at gas lock for the three tested 
prototypes.
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Fig. 9  Comparing the gas mass flow rates at gas lock for the three tested prototypes. 
 
 

 
 
Fig. 10  Comparing the intake GVFs at gas lock for the three tested prototypes. 
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bpd data had the narrowest.
For example, for the P1 prototype, Fig. 7, when the pump 

was operated at 75 bpd, the intake GVF was extended 
up to 90% before the pump boost pressure became zero. 
Subsequently, when the pump was operated at a liquid 
flow rate of 410 bpd, the pump could only handle about 
30% intake GVF before its boost pressure became zero. 
This behavior of attaining a higher GVF operating range 
at lower liquid volume flow rates may be attributed to 
the fundamental mechanisms of centrifugal machines. 
At lower liquid volume flow rates, centrifugal pumps 
generate higher boost pressures (or head), whereas the 
magnitude of the pressure boost (or head) decreases with 
an increasing liquid volume flow rate. The higher boost 
pressures (at lower liquid volume flow rates) delay the 
rapid decrease of the pump pressure boost to zero when 
pumping gas-liquid mixtures.

Effect of Vane Perforation Ratio
As previously discussed, the vane perforation ratios for 
P0, P1, and P2 were 0%, 4.6%, and 9.2%, respectively. 
The different vane perforation ratios were tested to as-
certain which prototype was more tolerant to gas, and 
would therefore make a good homogenizer. Figures 9 
and 10 show the comparisons for the three prototypes 
tested. The results presented are for liquid volume flow 
rates from 75 bpd to 480 bpd. For a given liquid volume 
flow rate, the data in Fig. 9 shows the corresponding gas 
mass flow rate when gas lock occurred for each of the 
three prototypes. Similarly, in Fig. 10, for a given liquid 
volume flow rate, the results show the corresponding 
GVF at which gas lock occurred.

Figure 9 shows that for liquid volume flow rates up 
to about 345 bpd, prototype P2 is able to handle the 
highest amount of gas mass flow rate before it becomes 
gas locked, whereas the prototype P0 handles the least 
amount of gas. Beyond 345 bpd, there is a negligible 
difference between the performance of the three proto-
types, although it was observed that P1 could handle a 
higher amount of gas at a higher liquid flow rate. The 
consistently better performance of P2 for liquid flow 
rates below 345 bpd, may be attributed to its higher 
vane perforation ratio. Having more holes in the rotor 
vanes increases the cross-flow between the pressure and 
suction sides of the rotor vanes. This increases the amount 
of mixing of the gas-liquid mixture in P2 compared to 
prototypes P1 and P0.

In Fig. 10, a similar consistency in the data up to 345 
bpd was also observed. Prototype P2 is able to handle 
the highest amounts of intake GVF compared to P1, with 
P0 handling the least amount of intake GVF. At 75 bpd 
of liquid, P2 can handle up to 90% intake GVF before 
it gas locks. As the liquid volume flow rate increases, 
its gas handling capability decreases to about 48% at 
140 bpd liquid and about 35% at 345 bpd liquid. The 
higher amount of gas handling by P2 is due to the same 
reasons previously discussed for the gas mass flow rate.

Conclusions
This study was about determining which configuration 
of a pump with modified impellers is able to handle 

a higher amount of gas when pumping gas and liquid 
mixtures. The conclusions from the work performed 
include the following:

• Operating the pumps at lower liquid volume flow 
rates enhances the gas handling capability of the 
pumps by increasing the range at which non-zero 
boost pressure occurs. This information will aid in 
design and optimization of a full-scale prototype 
pump scaled up to meet field flow conditions.

• The prototype with the highest vane perforation ratio 
handled the highest amount of gas, and therefore was 
the best candidate as a homogenizer within the pump. 
Incorporating more perforations in the rotor vanes of 
a field prototype will therefore facilitate mixing, which 
extends the gas handling capability of the pump.

• The current study and tests were performed using 
pumps with radial flow impellers, which are not very 
tolerant to gas handling. In field conditions, mixed 
flow or axial flow pumps, which are more tolerant 
to gas, are typically used due to their higher flow 
handling capabilities. Incorporating a higher number 
of perforations in the vanes of these impellers will 
increase their gas handling capabilities even further 
than those observed in this study. Overall, this ho-
mogenization method offers an economic alternative 
to increasing the gas handling capabilities of ESPs 
in high intake GVF operations.
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Geologic carbon dioxide (CO2) sequestration (GCS) has been considered as an efficient engineering 
measure to decrease the global CO2 emissions. The real-time monitoring of CO2 leakage is an important 
part of big-scale GCS deployment. In this work, we introduce a deep learning-based algorithm using a 
hybrid neural network for detecting CO2 leakage based on bottom-hole pressure (BHP) measurements. 

The proposed workflow includes the generation of train validation samples, the coupling process of 
training and validating, and the model evaluation. This work solves the diffusivity equation for pressure 
within the Computational Modeling Group framework used to generate data sets under no leakage 
conditions. A Bayesian optimization process is performed to optimize the model hyperparameters. We 
test the performance of the hybrid neural network called the convolutional neural network (CNN) and 
bi-directional long short-term memory (CNN-BiLSTM) on the BHP data collected from CO2 leakage 
simulations.

Results show that the CNN-BiLSTM model can successfully detect CO2 leakage events by comparing 
the difference between the predicted (no leakage) and tested BHP. We further compare its superiority 
with CNN, LSTM, BiLSTM, and CNN-BiLSTM. Our proposed model achieves the highest accuracy 
with the same data sets. The CNN-BiLSTM outperforms other models owing to: (1) its capacity to pro-
cess image-based input, which could accurately capture input formation, especially in cases with highly 
heterogeneous permeability, and (2) its bidirectional ability to capture time series dependency. 

Other models, like LSTM and BiLSTM, take value-based input, which is insufficient to describe the 
input information in highly heterogeneous cases. In contrast, the CNN model suffers from capturing the 
temporal dependency features. This approach provides an efficient and practical CO2 leakage detection 
method and can be implemented in large-scale GCS for the real-time monitoring applications.

Deep Learning Model for CO2 Leakage  
Detection Using Pressure Measurements
Dr. Xupeng He, Marwah M. AlSinan, Dr. Yiteng Li, Dr. Hyung T. Kwak and Dr. Hussein Hoteit

Abstract  /

Introduction
To satisfy the world’s growing energy demand while reducing the effects of climate change, we should reduce 
greenhouse gas emissions. Carbon capture and storage (CCS) provides an attractive measure for reducing green-
house emissions1. The supercritical carbon dioxide (CO2) is injected into the subsurface during the storage process. 
Moreover, the presence of faults or abandoned wells may cause significant leakage risk during the CCS projects2. 

The leaked CO2 may flow back into the atmosphere and dramatically negate the goal of the CCS project. CO2 
may also leak into other geoformations and acidize the groundwater3. Therefore, we should build a long-term and 
reduced risk CCS project. To achieve this goal, we need to track the movement of the CO2 plume4, and as such, 
various CO2 leakage monitoring techniques have been produced in recent years5-7. 

The development of machine learning enables us to detect pressure anomalies in a data-driven manner8. Traditional 
machine learning algorithms such as the long short-term memory (LSTM) network mainly deal with time series 
problems and cannot incorporate spatial information. The LSTM was originally introduced by Hochreiter and 
Schmidhuber (1997)9 and has been proven to be successful in many applications, such as serving as the forward 
model when performing history matching10 and CO2 leakage rate detection11. 

On the other hand, the convolutional network (CNN) was developed to deal with image-based problems. CNN 
is capable of extracting spatial information or features through image-based inputs and has been successfully 
deployed in upscaling problems12-14. Subsequently, CNN provides limited success in time series problems. Other 
neural networks such as U-Net for identifying the fractures from outcrops15, 16, artificial neural network for gas 
injection optimization17, fracture permeability estimation18, mud loss prediction19, the capacity of the CO2 stor-
age forecasting20, and physics informed neural network and gradient-based neural network methods for solving 
Darcy’s equations in heterogeneous media21, 22. The generative adversarial network can be used for digital rock 
reconstruction23. All of these mentioned applications show promising results. 

Different algorithms are deployed to detect CO2 leakage issues. Zhou et al. (2018)24 proposed a spatial temporal 
CNN to detect CO2 leakage by using seismic data. Chen et al. (2018)25 developed a machine learning and filter-
ing-based data assimilation approach to perform the CO2 sequestration monitoring design. This monitoring 
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design process is linked with the leakage. Gundersen et 
al. (2018)26 utilized the CNN to predict the CO2 seeps 
behavior in water columns. 

Zhong et al. (2019)1 proposed a spatial temporal convo-
lutional LSTM to perform the CO2 leakage detection, 
where the LSTM can learn the temporal features, and 
the convolutional layer can learn the spatial information. 
De Lima et al. (2019)27 transformed the seismic data 
into pseudo-red, green and blue images and utilized the 
transfer learning approach to detect CO2 leakage. De 
Lima and Lin (2019)28 used CNN to detect the CO2 and 
brine leakage using both the pressure and seismic data. 
Chen et al. (2022)29 developed reduced order models 
to forecast the CO2 leakage rate, and the factors that 
influence the leakage rate are also investigated. 

In this work, we developed a hybrid neural network 
called CNN bi-directional long short-term memory 
(BiLSTM) to detect CO2 leakage. The CNN-BiLSTM 
leverages the strengths of CNN and BiLSTM, in which 
CNN is used for spatial feature extraction, and BiLSTM 
is applied for temporal dependency recognition. The 
BiLSTM is a type of recurrent neural network that can 
process the information flow in both directions. The 
BiLSTM can combine the present and past informa-
tion by adding one more LSTM layer. For this reason, 
BiLSTM tends to produce more accurate predictions. 

The CNN-BiLSTM enables us to build a spatial-tem-
poral-based image-to-value regression model to learn the 
nonlinear mapping between high dimensional input data, 
e.g., permeability, porosity, injection rate, and predicted 
bottom-hole pressure (BHP) as an output. We deployed 
the Bayesian optimization process to automate the tuning 
of the model hyperparameters. To our knowledge, this 
workflow is applied in CO2 leakage detection for the 
first time. The workflow provides the prediction of time 
dependent BHP, and the pressure anomaly is detected 
by comparing the difference between the predicted (no 
leakage) and tested BHPs.

Methods
LSTM and BiLSTM
The LSTM networks can capture short-term and long-
term dependence in time series problems9. Figure 1a 

shows the structure of the LSTM. Each building unit 
of the LSTM includes an input gate (i ), a forget gate (f ), 
a cell candidate (g), and an output gate (o). 

The BiLSTM can process the information flow from 
the past to the future (forward) and from the future to 
the past (backward), while the LSTM can only handle 
situations with forwarding information flow. The bi-
directional ability of the information flow makes the 
BiLSTM different from regular recurrent neural net-
works. Figure 1b shows the structure of the BiLSTM, 
where the information can flow both in the forward and 
backward layers.

CNN, CNN-LSTM and CNN-BiLSTM

The CNN can take the image as input and capture the 
spatial dependencies of the image using different filters. 
The CNN can reduce the dimensionality of an image 
without significantly losing the critical features, which is 
essential for the following predictions. Moreover, CNN 
honors two main features: shared weights and local con-
nectivity. The feature of local connectivity enables each 
neural to learn local features in a small portion, which is 
essential, especially when dealing with high dimensional 
images. The feature of the shared weights increases the 
learning efficiency by reducing the number of parame-
ters. A typical CNN consists of the input, convolutional, 
pooling, flatten, fully connected, and output layers. 

The CNN-LSTM can take the image as input and 
make sequence predictions. As mentioned earlier, the 
LSTM can only deal with time series problems while it 
cannot handle spatial information. On the other hand, 
the CNN can extract spatial information from spatial 
input, but fails to make time series predictions. A hybrid 
version of CNN and LSTM combines the strength of 
image-based input and time series predictions. 

Moreover, CNN-BiLSTM combines the advantage 
of CNN and BiLSTM and therefore can process data 
from two directions, making it diverge from the regular 
CNN-LSTM. The CNN-BiLSTM has shown promising 
performances in various areas, such as textual sentiment 
analysis30, solar radiation prediction31, and human ac-
tivity recognition32. Figure 2 shows the architecture of 
the CNN-BiLSTM.

Fig. 1  The LSTM network architecture, where the green line represents the flow of input parameters in the unit, and the blue line denotes the flow 
of hidden states (outputs) at every time step. The orange line indicates the flow of cell states at every time step (a), and BiLSTM network 
architecture. The blue line denotes the forward flow, and the red line denotes the backward flow (b).
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Proposed Workflow
The workflow contains four main steps, Fig. 3, which 
are: (1) determine the uncertainty parameters and their 
ranges, (2) build the CNN-BiLSTM proxy model using 
Bayesian optimization, (3) detect the CO2 leakage by 
comparing the pressure anomalies, and (4) quality check. 
The four main procedures are detailed here. 
Step 1 – Identifying uncertainty parameters: We 
first identify the key uncertain parameters from exist-
ing knowledge and sample the identified parameters 
using Latin Hypercube Sampling (LHS). Followed by 
high fidelity simulation for each realization to generate 
corresponding output.
Step 2 – Building a CNN-BiLSTM proxy model: The 
proxy model using CNN-BiLSTM is developed to model 
the nonlinear mapping between the inputs and output, in 
which Bayesian optimization is implemented to automate 
the process of tuning hyperparameters.
Step 3 – Detecting CO2 leakage: We use the well-es-
tablished CNN-BiLSTM to detect CO2 leakage. If the 
pressure anomalies exceed the threshold, we think the 
CO2 leakage happened. To detect the pressure anomaly, 

we assume the pressure deviations obey the Gaussian 
distribution, and the detection function is expressed as: 
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, N is the length of the time series, 
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. For the new test data points, we use 
the detection function to determine whether the data 
points are within the normal range. Here we calculate 
the probability of the pressure difference (∆p) between 
the predicted pressure and the measured pressure of 
the monitor well. Zhong et al. (2019)1 set the threshold 
to 3σ, and he pointed out that the smaller the threshold, 
the more reliability the trained surrogate model needs. 
Since we managed to reach 99% accuracy for both the 
training and testing data set, we set the threshold as σ 
in this work.

Fig. 2  The architecture of CNN-BiLSTM showing the workflow from input data to predictions.
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Step 4 – Quality assessment: We then run the high 
fidelity model to compare with the CNN-BiLSTM pre-
dictions to check the accuracy. If the accuracy is low, 
we need to further improve the accuracy of the CNN-
BiLSTM. This step will not be applied when dealing 
with field applications.

Problem Formulation
CO2 Leakage Detection

The principle of CO2 leakage detection using pressure 
measurement is that the monitor well’s response diverges 
from the baseline when it receives a new pulse. The dif-
fusivity equation for computing the reservoir’s pressure 
in cylindrical coordinates can be expressed as:
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where P is the pressure, r is the radial coordinate, Ф is 
the porosity, µ is the dynamic viscosity of the fluid, cP 
is the total compressibility, k is the permeability, and t 
is the time. The pressure is affected by many factors. 
This study considers geological formations, such as the 
constant porosity and permeability.

Simulation Model Description

The Cranfield area started to perform CO2 storage in 
2009. Previously, oil and gas production originated in 

1944, and most production wells were abandoned in 19662. 
The detailed area of study, where the top and bottom 
can be considered as impermeable layers33, is studied. 
Three wells, including one injection well (denoted by 
F1) and two monitoring wells (denoted by F2 and F3, 
respectively), are located at the detailed area of study 
site. The effective porosity, permeability, and reservoir 
thickness from the previous study are used in this work2, 
where the effective thickness is set to 25 m. The initial 
reservoir pressure is set to be 4,718 psi. The injection rate 
is set to 500 ft3/d, with a cycle duration of 150 minutes, 
and each cycle includes a 50% shut-in period and a 50% 
injection period. The simulation model contains 120 × 
120 × 1 grid blocks, and each with a dimension of 1 m × 

Parameters Base 
Case Range

Gas injection rate (ft3/d) 500 400 ~ 600

Permeability (mD) 1.5 0.5 ~ 10

Porosity 0.1 0.05 ~ 0.3

Table 1  The value and range of the base case parameters.
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Fig. 3  An illustration of the proposed workflow. 
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Fig. 4  The structure of the CNN-BiLSTM input data. 
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Fig. 5  The pressure distribution after 90 minutes of CO2 injection (a), and pressure change in Well-F2 (b).
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Hyperparameters Initial Range Optimized Hyperparameters

Neurons of the first BiLSTM layer 200 ~ 500 436

Neurons of the second BiLSTM layer 200 ~ 500 352

Neurons of the first fully connected layer 50 ~ 150 102

Epochs 100 ~ 300 251

Batch size 1 ~ 200 15

Learning rate 0.00001 ~ 0.4 0.0017145

Table 2  The initial range and the optimized hyperparameters.
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Fig. 6  A comparison of pressure change of Well-F2 vs. time generated by simulations and CNN-BiLSTM proxy, where (a) show cases from the training 
set, (b) cases from the testing set, and parity plots (c) and (d) evaluate at tD = 75 minutes and tD = 150 minutes, respectively

Fig. 7  (a) The CO2 leakage detection based on the CNN-BiLSTM proxy, where the red line denotes the no leakage pressure predictions based on 
CNN-BiLSTM, and the blue line denotes the case with CO2 leakage; (b) The comparison between the pressure change predicted using CMG 
(red dots) and CNN-BiLSTM proxy (blue line).
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Fig. 8  The matching quality of CNN, LSTM, BiLSTM, and CNN-LSTM in pressure prediction. Pressure training accuracy (a) and prediction accuracy (b) 
using CNN; training accuracy (c) and prediction accuracy (d) using LSTM; training accuracy (e) and prediction accuracy (f) using BiLSTM; and 
pressure training accuracy (g) and prediction accuracy (h) using CNN-LSTM.
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1 m in the horizontal direction. Table 1 lists the variation 
of the parameters.

Figure 4 illustrates the inputs of the CNN-BiLSTM. 
One dynamic 2D image and two static 2D images are 
introduced to account for the time series and geological 
features, respectively. The pixel value in the injector 
location is the injection rate, and all the other pixel val-
ues are zero. 

Figure 5a shows the pressure distribution after 90 min-
utes of CO2 injection, and Fig. 5b shows the pressure 
change of the monitoring well, Well-F2, during the CO2 
injection. This case represents the typical behavior of 
the used model, which serves as the baseline case in 
this study.

Results
We use a synthetic CO2 leakage case as the observation 
data, based on the base case as stated in Table 1. We use 
the prediction from the CNN-BiLSTM model as the no 
leakage baseline. The objective is to demonstrate that 
the established model can detect CO2 leakage. 

First, we set the range of the uncertainty parameters. 
The CNN-BiLSTM is trained with 800 and tested with 
100 cases generated using LHS. The Bayesian optimi-
zation is used to automate the tuning process of the 
hyperparameters, and we show the initial range and 
the optimized hyperparameters in Table 2. 

The number of filters and the filter size in convolu-
tional layers are set to 16 and 5, respectively. Figure 6a 
shows the matching accuracy of the training cases, and 
Fig. 6b shows the matching accuracy of the prediction 
accuracy. Figure 6c and Fig. 6d show the parity plots 
at tD = 75 minutes and tD = 150 minutes, respectively. 
The results show good matching for both the training 
and predictions.

We use a synthetic simulation model with the CO2 
leakage rate of 50 ft3/d, and other parameters are set 
to the same as the base case to mimic the CO2 leakage 
phenomenon. We can use the well-trained CNN-BiLSTM 

surrogate to predict the pressure change of Well-F2 in 
a no leakage situation, so the CNN-BiLSTM can serve 
as an anomaly detector of CO2 leakage. 

Figure 7a shows the anomaly detections, where the 
shaded zone represents the confidence intervals of no 
leakage occurred determine by the detection threshold 
σ. We can clearly see that the pressure anomalies tend 
to happen in the later stage of the pulse testing because 
more CO2 has been leaked to the surface with increased 
testing time. Figure 7b compares the pressure change 
in the base case without CO2 leakage, and the pressure 
change predicted using the CNN-BiLSTM. The match-
ing shows good agreement and proves the effectiveness 
of the CNN-BiLSTM and the accuracy of the anomaly 
detections.

Comparison of Different Methods
We compare the performance of different surrogate 
models, such as CNN, LSTM, BiLSTM, and CNN-
LSTM. Figures 8a to 8h shows the training and testing 
accuracy of the different proxy models. The training 
and testing set is set to 800 and 100, respectively. The 
range of the hyperparameters is the same as in Table 
2, and the tuning process is automated using Bayesian 
optimization.

Figures 9a and 9b give the average training and testing 
root mean square error (RMSE). We can quickly notice 
that the CNN-BiLSTM achieves the highest accuracy, 
therefore, we use the CNN-BiLSTM as our proxy model.

Conclusions
We present a novel workflow to efficiently and robustly 
perform CO2 leakage detection using CNN-BiLSTM 
and Bayesian optimization, where the CNN-BiLSTM 
is developed to capture both the time dependent and 
spatial information of the high fidelity model and reduce 
the computation time. Bayesian optimization is used to 
automate the tuning process. Specifically, the developed 
CNN-BiLSTM maps the nonlinear relationship between 
the input (permeability, porosity, and injection rate) and 

Fig. 9  The performance of different surrogate methods toward (a) training RMSE, and (b) prediction RMSE.
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the output (pressure change of Well-F2).
The use of the LHS is crucial because it produces 

space filling manner samples using a stratified sampling 
scheme, and therefore it provides the generality of the 
established proxy model. Other sampling methods usually 
generate clustering effects because they tend to generate 
unbalanced samples.

The pressure anomalies are mainly detected in the 
later stage of the injection period, which is caused by 
the accumulative leakage of the CO2 during injection. 

A detailed comparison of different proxies can be found 
in Fig. 9, where the CNN-BiLSTM has the lowest RMSE. 
The CNN cannot capture the time series feature and 
thereby performs the worst. The LSTM and BiLSTM 
cannot deal with spatial information, so the performance 
of the two surrogates is not satisfying. The CNN-LSTM 
can handle both the time series and spatial feature while 
performing relatively worse than the CNN-BiLSTM, 
since the CNN-BiLSTM can process the information 
bidirectionally.

The Bayesian optimization is used to automate the 
tuning task instead of the traditional trial-and-error 
process. Choosing an appropriate objective function 
when performing the Bayesian optimization is critical. 
In this work, the prediction RMSE is chosen as the 
objective function to maximize the predictability of the 
surrogate model.
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A new physics guided artificial intelligence (AI) machine learning method for petrophysical interpretation 
model development is described. The workflow consists of the following five constituents: (1) Statistical 
tools, such as correlation heat maps, are employed to select the best candidate input variables for the 
target petrophysical equations; (2) A genetic programming-based symbolic regression (SR) approach is 
used to fuse multiphysics measurements data for training the petrophysical prediction equations; (3) An 
optional ensemble modeling procedure is applied for maximally utilizing all available training data by 
integrating multiple instances of prediction equations objectively, which is especially useful for a small 
training data set; (4) A means of obtaining conditional branching in prediction equations is enabled in 
SR to handle certain formation heterogeneity; and (5) A model discrimination framework is introduced 
to finalize the model selection based on mathematical complexity, physics complexity, and model per-
formance.

The efficacy of the five constituent’s petrophysical interpretation development process is demonstrated 
on a data set collected from six wells for a goal of obtaining formation resistivity factor (F ) and permea-
bility (k) equations for heterogeneous carbonate reservoirs. This study demonstrates that this new petro-
physical model development process has many advantages over traditional empirical methods or other 
commonly used AI methods.

Use of Symbolic Regression for Developing 
Petrophysical Interpretation Models 
Dr. Songhua Chen, Dr. Wei Shao, Dr. Huiwen Sheng and Dr. Hyung T. Kwak

Abstract  /

Introduction
For complex lithology and mineralogy rock formations, especially where the underlying correlations between log-
ging responses and the target petrophysical attributes are nonlinear, it is difficult to come up with mechanistic or 
even empirical correlation equations. It is more challenging if data collected from multiple logging tools are used 
to build a petrophysical interpretation equation. On the other hand, most commonly used data-driven methods, 
such as the neural network, decision tree, K-nearest neighbor, support vector machine, or random forest, etc., 
deliver predicted results in numerical quantities, rather than analytical equations.

It would be extremely difficult, if not impossible, to assess whether such a solution is consistent to measurement 
physics with the black box prediction. Further, in the case where multiple physics measurement data are included 
in the input parameters, there is no transparency on how each measurement contributes to the predicted results 
with these black box machine learning methods. 

In this article, we describe a symbolic regression (SR) approach, which is capable of combining multiphysics 
measurement data with genetic programming-based artificial intelligence (AI) to deliver prediction equations that 
utilize logging responses as inputs to capture variations of formation characteristics, thereby adjusting interpre-
tation equations accordingly.

SR mimics genetic evolution processes of crossover and mutation to fuse different measurement physics data 
together for generating the target equations for various petrophysics parameters. Both measurement physics and 
statistical tools, such as correlation heat maps, have been employed to select the relevant, best suited input variables 
for a given target’s petrophysical attribute.

The measurement physics is not only used in the process of selecting input variables, but also for reducing the 
search space of all feasible function forms, for setting constraint in fitness criteria, and for evaluating the rationality 
of the SR derived prediction equations. To address the limited availability of the number of core analysis data for 
training the models, ensemble modeling is applied with several SR predicted equations to improve the overall 
performance of the final prediction model.

For some heterogeneous reservoir rocks, certain petrophysical parameters often can’t be described by a single 
equation. A traditional empirical approach is often used to create conditional branched equations with the condi-
tion that can be either facies-based or based on a key input variable. For instance, Gomaa et al. (2006)1 proposed 
two permeability equations to be applied for micropore and mesopore dominated carbonates, and for macropore 
dominated carbonates, respectively.

Developing such conditional branched petrophysics equations empirically are quite involved and require a lot of 
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experience to identify the parameter used for the condi-
tion, and to quantify the condition. For SR, including 
or excluding conditional branch can be controlled with 
the inclusion of conditional operators such as max(x,y), 
min(x,y), etc., in the allowed pool of mathematical func-
tions and operators for creating the targeted mathematical 
expressions. When they are included, the prediction 
equation may or may not contain the branch conditions, 
therefore objectively determining the necessity of the 
choice of conditional branching.

Black box AI predicted results often have the deficiency 
of being unable to compare two models predicted with 
different methods, different data, or different termination 
conditions, other than just a model performance such as 
R2 of the verification data vs. the model predicted values. 
With the SR delivered prediction equations, rather than 
predicted values, one is able to evaluate two models 
beyond the model performance alone; one can also ex-
amine the different models based on their mathematical 
complexity and physical measurement complexity.

The five constituent’s petrophysical interpretation de-
velopment process described in this work has been tested 
on a data set for the objective of obtaining formation 
resistivity factor (F ) and permeability (k) equations for a 
heterogeneous carbonate reservoir. Logging responses 
equivalent core analysis data, including nuclear magnetic 
resonance (NMR) T2 distribution and its derivatives such 
as T2GM, free fluid index (FFI ), micropore and macropore 
volumes, 
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, and acoustic 
measurements, Vp, along with the core perm and F as 
the “ground truth” target data, are used to train the 
interpretation equations. 

Following the correlation heat map ranking, the highly 
correlated inputs are used with the SR to generate models 
that are better than the Archie equation for the case of 
F and cementation factor, m, where variation of m can 
be derived based on porosity, Vp and 
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macro have 
proven to perform superior to other combinations of input 
variables. These demonstrate that SR derived prediction 
models are capable of building the variation of formation 
via logging responses into the interpretation models.

Methodology
Review of Conventional Empirical Approaches

When one needs to derive petrophysical interpretation 
models for a new, heterogeneous reservoir rock formation, 
petrophysicists usually take one of the following two 
approaches. Often, one would start from well-known 
equations, such as Archie’s equations2 for saturation 
or SDR3 or Coates equation4 for k, honoring the gen-
eral function form and the input dependencies of the 
equations, but tweaking the coefficients and/or model 
parameters.

For instance, for Archie’s formation resistivity factor 
(F ) and saturation (Sw) models,
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the general power-law function forms of the equations 
are kept, while the cementation exponent m, saturation 
exponent n, and/or tortuosity parameter a are “calibrat-
ed” to fit the specific formation. In Eqns. 1 and 2, 
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 is 
the total porosity, R0 is the resistivity of brine-saturated 
rock, and Rw is the resistivity of the brine fluid. σt and 
σw are the conductivity of the total fluid saturated and 
brine, respectively. Similarly, for the SDR3 k model,
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the parameters of a = 4, b = 2, and C are “calibrated” 
formation dependent parameters while the general pow-
er-law dependency function form is kept untouched. 
We call such an approach the “parameter tweaking 
approach.”

Conceptually, a parameter tweaking approach ac-
knowledges the difference of one formation rock type 
from another, however, one single set of “calibrated” 
parameters may not be adequate to deal with the lo-
cal heterogeneity of rocks. When one set of parameter 
tweaking is insufficient, petrophysicists usually favor 
the facies-based parameter tweaking approach, where 
the local variation is identified as different facies, and 
for each facie, a set of parameters is obtained from a 
core calibration. Though an improvement, the facies 
identification itself usually is subjective and a discrete 
number of facie IDs may be still insufficient to account 
for depth-by-depth variation effectively.

The parameter tweaking approach has a fundamental 
assumption of the validity of the original equation form. 
For instance, Archie’s equation is based on a so called 
Archie’s rock. Complex rock formation may depart from 
Archie’s rock type characteristics significantly, such that 
the validity of the Archie function form is no longer ap-
plicable. When this occurs, petrophysicists would seek 
for new equations, which may include different measure-
ments and different function forms. This second route 
carries a lot of unknowns, and therefore, naturally, it 
is in a less comfortable zone for many. Not only is the 
optimal equation form unknown, the measurements that 
might be useful as input variables are also unknown. On 
top of that, local heterogeneities may require different 
equations to be used.

Objectives of New Model Development Approach

Our objective is to develop a machine learning approach 
that has the following features:

• Use well logging data as input to the petrophysical 
models to capture the continuous reservoir rock het-
erogeneity depth-by-depth, although core analysis 
data are needed to train the models.

• Predict target petrophysical equations rather than 
black box values.

• Be capable of predicting the target equations of either 
type: the “parameter tweaking” for the existing equa-
tions, i.e., predicted equation for parameter variations, 
or a new equation not related to the existing equation 
form with the same or different measurements.
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• Combine multiphysics logging measurement data 
inputs objectively in seeking a target equation.

Workflow Description
Correlation Heat Map for Multiphysics Data Selection
The first task in any petrophysical model development 
process involves selecting the most relevant tool mea-
surement data (model input variables) to be used to train 
the model. Tool measurement physics is usually the first 
to consider. Measurement physics tells the dependen-
cy of a particular tool’s deliverables in general, but for 
heterogeneous rocks, the sensitivity of such dependency 
is not always obvious. Therefore, in our process, the 
measurement physics criteria are used primarily for a 
more inclusive selection of data. Next, we use a statistical 
method to decide which data are to be included as the 
input variables for a target model.

The statistical tool we use is the correlation heat map. 
Two types of heat maps have been routinely used in our 
workflow: Pearson’s linear correlation and Spearman’s 
monotonic ranking correlation. Figure 1a is an example 
of a linear correlation and Fig. 1b is an example of a 
monotonic ranking correlation.

Figure 2 shows an example of heat maps based on 
the Pearson correlation, and the Spearman correlation 
for a target parameter of permeability, k, with several 
measurement variables, including sonic compression 
velocity, Vp, 
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macro, and FFI, respectively. 
The color code represents the correlation strength from 
1 (strongest positive correlation) to -1 (strongest negative 
correlation). A correlation coefficient in the neighborhood 
of zero represents the weakest correlation. Ideally, we shall 
prioritize the selection of input variables (measurement 
data) only with stronger correlations (< -0.7 or > 0.7) 

but the criteria can be relaxed based on the availability 
of the strongest correlation data.

A high Pearson correlation often implies a high 
Spearman correlation (an exception exists which will 
be discussed later) but the vice versa is not always true. 
Therefore, if we found very high Pearson and Spearman 
correlation coefficients for one or more candidate input 
variable(s), this implies simple linear regression or multi-
linear regression may be sufficient to build a petrophysical 
model, even though SR still can be used. On the other 
hand, if the Spearman correlation coefficient is signifi-
cantly higher than the Pearson correlation coefficient, 
this implies a more complicated model equation may 
work better, in which the SR method is expected to 
produce the prediction equation better.

SR 
The SR analysis algorithm searches the mathemati-
cal expressions to come up with the prediction model 

Fig. 1  An example of a linear correlation (a), and a 
monotonic ranking correlation (b).
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Fig. 2  Examples of the Pearson heat map (top), and the Spearman heat map (bottom). 
 
 
 
 

 
 
Fig. 3  An illustration of the SR process for predicting petrophysics equations. 
 
 
 

Fig. 2  Examples of the Pearson heat map (top), and the Spearman heat map 
(bottom).
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equation that best represents a given training data set, 
in the defined accuracy and simplicity criteria. Among 
all available SR software packages, DataRobot5 and AI 
Feynman6 are most popular. The work in this article is 
based on the use of available algorithms in DataRobot. 
This does not imply one is more favored than the other. 

SR in DataRobot is a genetic programming based 
algorithm. Genetic programming resembles nature’s 
evolution processes of crossover and mutation. Crossover 
pairs the genetic materials from each parent to cross 
over from one another to pass to the child, which can be 
viewed as a combining process. A mutation occurs when 
the genetic message carried by the gene of the parent is 
altered to pass to the child. In our model development 
process, the primitive function expressions and opera-
tors are the parent genes and the SR algorithm follows 
the genetic processes to create the prediction function. 
Figure 3 is an illustration of this process.

In this process, a multiphysics tool data as an input 
variable is fed into the genetic programming algorithm, 
along with preselected functions and mathematical opera-
tors, as well as predefined fitness objects. The preselected 
functions and operators narrow the “gene pool,” and 
measurement physics knowledge would be very use-
ful to exclude those that do not obey the measurement 
physics, and add the ones that are known, correlating 
well with the target.

For example, triangular functions are largely irrelevant 
to many petrophysical interpretation equations, therefore, 
they are better excluded to avoid the risk of fitting noise. 
It is also desirable to combine certain input variables in 
accordance to their correlation with the target variable. 
If 
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. 
Doing so increases computational efficiency and makes 
the target equation more physically interpretable. 

It should be noted that customizing input variables 
(such as 
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) do not cause the predicted equation to 
be subjective to user bias. The SR prediction process 
just treats it as one independent variable, which may or 
may not appear in the predicted outcome — the target 
equation.

Iteratively, the genetic evolution process in SR runs 

repeatedly until a determination condition is met, which 
is either when a maximum number of generations has 
been produced or a satisfactory fitness level has been 
reached. Then, the target prediction equation is obtained. 
It is important to understand that genetic evolution pro-
cesses and crossover and mutation, occur randomly. 
This random nature is a key feature in the SR process. 
The randomness ensures that the outcome is not sub-
ject to human bias and the combination of multiphysics 
measurements into one equation is naturally optimized.

On the other hand, the prediction outcome is not ex-
pected to be unique, namely if we run the same data 
with the same predefined fitness objects multiple times. 
It is no surprise that we may obtain different prediction 
equations, as the result of a random genetic programming 
process occurs in each run. When we have a large, diverse 
training database, these different equations should have 
equivalent effectiveness, and they are all valid.

Randomness also occurs in the inclusion of training data 
when running SR in multiple instances independently. 
During the SR model training process, the DataRobot 
algorithm randomly selects a subset of all available data, 
e.g., two-thirds, for training, and the remaining one-
third for validation. With each training run, the training 
data are randomly selected independently. Again, this 
ensures unbiased training, but a nonunique, though 
equally valid, outcome.

Ensemble Modeling
When the training data sets are large, taking two-thirds 
of the data set is still a large database, therefore it is un-
likely to affect the outcome’s general representativeness 
to the entire database significantly. Consequently, when 
the training data set size is marginally acceptable, each 
training run’s result could defer in the performance. It 
is desirable to come up with a method that can combine 
multiple runs’ diverse equations in an objective manner, 
thereby the resultant ensemble model aggregates the 
prediction of each base model used as the final predic-
tion model.

The concept of ensemble modeling is applicable to 
base models that are diverse in training data, diverse 
in training algorithms (random genetic programming 
iteration can be viewed as a different training algorithm 
in a broad sense), or the combination of the two, which 

Fig. 3  An illustration of the SR process for predicting petrophysics equations.
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makes it applicable to SR trained base models. In general, 
ensemble modeling can be expressed as:

 

 

 

Saudi Aramco: Public 

 
𝐹𝐹 = 𝑅𝑅0

𝑅𝑅𝑤𝑤
= 𝑎𝑎

𝜙𝜙𝑚𝑚     (1) 
 
𝜎𝜎𝑡𝑡 𝜎𝜎𝑤𝑤⁄ = 𝜙𝜙𝑚𝑚𝑆𝑆𝑤𝑤𝑛𝑛/𝐴𝐴,   (2) 
 
𝜎𝜎𝑡𝑡 and 𝜎𝜎𝑤𝑤 
 
𝑘𝑘 = 𝐶𝐶(𝜙𝜙𝑁𝑁𝑁𝑁𝑅𝑅)𝑎𝑎(𝑇𝑇2𝐺𝐺𝑁𝑁)𝑏𝑏,     (3) 
 
𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝜙𝜙  

 
𝑀𝑀𝑒𝑒𝑛𝑛𝑒𝑒 = ∑ 𝑐𝑐𝑚𝑚𝑚𝑚 𝑀𝑀𝑚𝑚     (4) 
 
𝑀𝑀𝑚𝑚 = ∏ 𝐴𝐴𝑚𝑚,𝑘𝑘𝑘𝑘 𝑥𝑥𝑘𝑘

𝑒𝑒𝑘𝑘    (5) 
 
𝑙𝑙𝑙𝑙𝑙𝑙𝑀𝑀𝑒𝑒𝑛𝑛𝑒𝑒 = ∑ 𝑐𝑐𝑚𝑚𝑚𝑚 𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥𝑚𝑚   (6) 
 
C(E) = aCr(E) + βCc(E)                  (7) 
 

𝐹𝐹 = a
𝜙𝜙𝑚𝑚 = 2.53

𝜙𝜙1.40   (8) 
 

𝐹𝐹 = 2.59
𝜙𝜙𝑚𝑚     (9) 

 
m = 0.17 log T2LM – 0.29 log Ф.               (10) 
 
𝐹𝐹 = 2.09

𝜙𝜙𝑚𝑚     (11) 
 
m = 0.2 log T2GM – 0.29 log Ф.              (12) 
 

𝐹𝐹 = 𝑉𝑉𝑝𝑝1.38

𝑒𝑒10.52𝐹𝐹𝐹𝐹𝐹𝐹0.37𝜙𝜙0.91   (13) 
 
 

𝐹𝐹 = 𝑉𝑉𝑝𝑝1.15

𝑒𝑒8.75𝜙𝜙1.44,   (14) 
 
𝑘𝑘 = 0.68𝜙𝜙1.16𝑇𝑇2𝐿𝐿𝑁𝑁1.09   (15) 
 
𝑘𝑘 = 0.037𝜙𝜙𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

0.55 𝑇𝑇2𝐿𝐿𝑁𝑁1.65   (16) 
 
𝑘𝑘 = 1012𝜙𝜙 ∙ 𝜙𝜙𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

0.56    (17) 
 
𝑘𝑘 = 0.037𝜙𝜙𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

0.55 𝑇𝑇2𝐿𝐿𝑁𝑁1.65   (18) 
 
1n k = a + b1 1n Ф + b2 1n Фmacro + b3 1n T2LM                (19) 
 

 4

where Mi is the i-th base model, ci is the weight coef-
ficient of the i-th base model, and Mens is the resultant 
ensembled model.

The formation of an ensembled model is not limited 
to the way described in Eqn. 4. For instance, if all the 
base models are in a power law form: 
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it may be desirable to construct the ensemble model in 
logarithmic scale:
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where xi is i-th input variable and x0 = 1 is a defined 
constant. 

Conditional Branching

Conditional branching is a model development technique 
that is especially applicable to scenarios where one or 
more input variables correlates to the target prediction 
parameter in distinct clusters. In a conventional empirical 
model development process, usually it takes an experi-
enced petrophysicist to discover such branching criteria, 
and in the process, may introduce human “preference” 
or bias. Most data driven prediction methods, at best, 
may need to first use a clustering approach to identify the 
clusters, then try to come up with individual equations 
for each cluster. This is different from the direct find 
optimal branching condition during the training process.

While conditional branching can be an effective means 
to optimize a prediction equation, the overuse of condi-
tional branching could potentially cause overfit with the 
piecewise fitting mechanism, resulting in an increased 
uncertainty of model application envelop to new data. 
Therefore, this capability is only switched on when the 
performance of the unbranched prediction equation is 
not satisfactory.

The conditional branching capability in genetic pro-
gramming-based SR can be turned on and off by inclusion 
or exclusion of branching enabled operators, such as max 
or min operators, providing us easy control.

When the conditional branching is enabled, the ten-
dency is that the prediction equation is frequently to 
contain a branch, even though it may not be necessary, as 
a branching usually improves fitting of data. To prevent 
unnecessary conditional branching, we developed the 
fifth feature of our workflow to objectively determine 
whether the branching is necessary.

Model Selection Criteria

A branched equation increases model complexity. 
Therefore, it is desirable to compare several prediction 
model forms for its complexity. Initially, the need of such 
criteria arises from comparing branched and unbranched 
models. Soon, we recognize the same concept is useful to 
compare the models from various SR random runs, and 
even SR delivered models with other existing empirical 

model equations.
In consideration of a broad application model selec-

tion criteria, equation complexity alone is insufficient. 
Different models may contain different input variables, 
which may come from different logging instruments, and 
which have different data fidelity, availability, and cost 
to acquire issues. In addition, model performance, such 
as the R2 error, may need to be considered. Along these 
considerations, this leads us to believe an effective optimal 
model picking process should include three elements: 
(1) mathematical complexity, (2) physical measurement 
complexity, and (3) model performance. Each can be 
assigned a score. The lower the overall complexity of 
the score, the better.

A mathematical complexity score usually can be eval-
uated with known algorithms. Su et al. (2021)7 described 
an algorithm for the computing mathematical complexity 
of a mathematical expression E as the following:
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c(E) can be referred in Su et al. (2021)7.
We adapted a much simpler algorithm for computing the 

mathematical complexity of a mathematical expression 
E. The algorithm represents a mathematical expression 
E in a binary tree. The depth of the binary tree for the 
mathematical expression E is considered as the repre-
sentation complexity of E. Each operator or function in 
the binary tree is assigned a score for its computation 
complexity. For example, + and – operators are assigned 
a score of 0, /, and * operators are assigned a score of 
1, etc. The computation complexity of E is computed 
cumulatively by traversing the binary tree.

Application Examples
The five constituent’s workflow previously described has 
been applied to a data set containing core data from five 
carbonate wells. All the input variables are from core 
analysis measurements. These core measurements are 
logging equivalent variables, meaning that all of these 
core analysis deliverables have an identical counterpart in 
logging measurements. Therefore, the models developed 
with training data from core analysis can be applied 
directly to log interpretation. The target petrophysical 
parameter in this study is F, and k.

F Prediction

In this example, we demonstrate the use of a subset 
of the five constituents to predict F for capturing the 
formation heterogeneity.

Figure 4 shows the correlation heat maps for F. Both 
Pearson and Spearman correlation coefficients indicate 
that porosity, 
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, compressional velocity, Vp, and NMR FFI 
are quite strongly correlated to F. In addition, NMR T2LM 
is also a potential candidate, considering the Spearman 
ranking correlation coefficient is greater than 0.5.

For convenience, it is also preferred that a sorted heat 
map column is used with the target parameter on the 
top, followed by the input candidate variable having the 
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strongest positive correlation with the target. Other can-
didate input variables are listed in the descending order 
according to the value of the correlation coefficient with 
the strongest negative correlation on the bottom, Fig. 5.

The heat map plotted in this manner allows us to quickly 
spot the strongest candidate input variables (both pos-
itive and negative) to be included in the training. The 
sorted Pearson and Spearman heat maps, plotted side 
by side, also conveniently show the difference between 
the two. Often, the Spearman correlation is higher than 
the Pearson. Bucking this trend usually indicates that the 
candidate input variable’s distribution may be farther 
away from normal distribution and weighs more in the 
tails. This may not be a negative indication, but certainly 
could be influential for us in designing the training, i.e., 
to justify the conditional branching parameter.

While the heat maps presented in the form shown in 
Fig. 5 have certain benefits, the original heat maps shown 
in Fig. 4 present additional correlations between multiple 
candidate input variables that the sorted heat maps can-
not. If two of the candidate input variables are strongly 
correlated, including both may not be necessary. On the 
other hand, if two candidate input variables all highly 
correlated to the target, but they weakly correlate to each 
other, including both can be beneficial for developing 
the model because they are independent.

Several different training strategies were used and are 
described next. In the first simple attempt, we tried to 
demonstrate that SR can reproduce the Archie model. 
When we narrow the input variable to porosity only, the 
SR indeed produced a power-law dependence equation 
from the training date set:
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The cross plot of the predicted vs. measured F for this 
carbonate field is illustrated in Fig. 6, with a = 2.54, 

m = 1.40, and R2 = 0.74. The available data set only 
contains 32 samples, two-thirds are randomly allocated 
for training with one-third for validation. With such a 
small data set, each of the individual runs could produce 
somewhat different results, i.e., m and a in Eqn. 8 can 
vary somewhat.

Next, we demonstrate that the heterogeneity of the 
formation on F determination can be incorporated by 
tweaking the cementation factor. Namely, we honor the 

Fig. 4  The Pearson (left) and Spearman (right) heat maps for F with several input variables.
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Fig. 5  Other candidate input variables listed in the descending order according to the value of the 
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Archie equation form but allow m to be variable and m 
is determinable by independent logging-data-equivalent 
measurements. The SR predicted result is:
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The predicted F (by Eqn. 10) vs. measured F cross plot 
is shown in Fig. 7, with R2 = 0.93.

Equations 9 and 10 are trained based on the randomly 
allocated two-thirds of the data and the other one-third 
for validation. We can see that by allowing m to be an 
equation with variables of T2LM and 
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We see the coefficients in Eqns. 11 and 12 only have 
small differences from those in Eqns. 9 and 10, indicat-
ing the equation is robust because it is insensitive to the 
random selection of training data, and R2 = 0.96 also 
shows insignificant improvement from that of Eqn. 10.

We have demonstrated the use of SR to predict F by 
tweaking the Archie parameters. The tweaking of the 
model is much more than just finding a different constant 
to replace the default a and m. Using Eqn. 10 or Eqn. 12, 
the effect of formation heterogeneity on F is captured 
by T2GM and 
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, which allows on-the-fly continuous vari-
ation of the Archie model. Such continuous variation 
of the Archie parameters is much more powerful than 
facies-based discrete sets of Archie parameters. Moreover, 
it does not require human interference of determining 
facies first.

Next, we demonstrate applying SR on the same set of 
data to predict the F equation without being constrained 
by Archie’s equation form. As we previously described, 
the randomness nature of the SR process may yield 
diverse prediction equations when running it multiple 
times. Two of such prediction equations are: 
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, as candidate input variables, based on the 
information in the correlation heat maps, Fig. 5, for all 
instances of training runs. Yet, the resultant equations 
may not include all of these variables. The SR algo-
rithm determines which variables are more relevant. 
The embedded algorithm favors to avoid overcompli-
cated equation form, therefore, usually only a subsect 
of the entire selected candidate input variables may be 
included in the target equation. In this case, Eqn. 13 
has three independent input variables: Vp, FFI, and 
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. The difference 
is not surprising considering (a) the data set is small — 
the random selection of training data being included in 
training matters, and (b) the random nature of the genetic 
programming-based crossover and mutation processes 
also contributes to the diversity of the equations. 

Despite the diversity in the prediction equation forms, 
these equations are equally valued in view that they pass 
the same training process, and when the data set are suf-
ficiently large and diverse, the performance should have 
an insignificant difference. Even if the data set is small, 
the random training data allocation prohibits artificial 
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Fig. 6  The cross plot of the predicted vs. measured F for this carbonate data set with R2 = 0.74. 
 
 
 
 

 
 
Fig. 7  The SR developed equation for F by tweaking the Archie parameter, allowing the cementation 
exponent variable and determined by independent logging equivalent measurements, R2 = 0.93.  
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Fig. 7  The SR developed equation for F by tweaking the 
Archie parameter, allowing the cementation exponent 
variable and determined by independent logging 
equivalent measurements, R2 = 0.93.
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bias, but a too small data set could result in unintentional 
data diversity fluctuation. In such a case, evaluation of the 
model performance comparison provides one additional 
layer of guard from performance fluctuation.

In the present case, both models perform equally well 
with R2 = 0.96. Noting this R2 value is identical that 
with Eqn. 9, we are more confident that either of these 
models are quite optimized. 

k Prediction
The previous example is a relatively simple case as the 
data are well behaved in the sense that the correlation 
between input variables and target are strong. From 
case to case, we may encounter data that are more di-
verse, noisier, and/or weak correlations between inputs 
and target. To demonstrate that the SR can also handle 
such more challenging cases, we apply our workflow on 
the same core data set to obtain k prediction equations.

The heat maps for k were previously shown in Fig. 2, 
and the sorted heat maps are shown in Fig. 9.

It is quite obvious from Fig. 9, that the k does not lin-
early correlate to either of these candidate input variables 
strongly. It is somewhat better correlated to a few candi-
dates in the monotonic sense (Spearman). Clearly, the 
correlations are much weaker than that for F. For such 
weaker correlation cases, coupled with a small available 
data set, the prediction problem becomes challenging.

The Spearman heat map in Fig. 9 indicates that those 
candidate input variables that have relatively high cor-
relation coefficients ( > 0.5) are all deliverables from 
NMR measurements. This suggests to us first to try using 
NMR deliverables alone to train the k model.

We conducted several SR training runs using DataRobot 
to obtain several equations with varying, mediocre per-
formance. Figure 10 shows four of the results. The R2 

values vary from 0.47 to 0.69. Although all of them per-
form better than the commonly used NMR-based SDR 
k equation with default parameters (Fig. 11 with a R2 = 
–0.98), none of them are highly satisfactory. Therefore, 
the next step is necessary to improve the model.

Multiple runs generated equations that show different 

Fig. 8  The performance of the two F prediction equations trained by the same database. The randomness of the genetic programming-based SR and 
the random selection of training data inclusion yield different prediction equations, equally valid, but may vary input variable dependences.
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Fig. 9  Sorted heat maps for the k model development. 
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dependencies, five of which are shown in Eqns. 15 to 
18, each containing a different set of input variables, 
even though the included candidate input variable sets 
for training are the same. The small number of input 
variables in each of the equations is understandable as 
the noisy, not so strongly correlated inputs and the target 
usually do favor fewer variables in the equation. The 
diversity of the dependencies again attributes to small 
training data sets randomly selected, and the random 
process in genetic programming based SR.
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Fig. 10  Four instances of training run results with a small data set of weak correlations for permeability equation with NMR deliverables.

Fig. 11  A comparison of the SDR k equation with default 
parameters calculated k vs. measured k.
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In this case, the ensemble modeling approach is applied 
by taking the logarithmic operation on each side of these 
equations first. Recognizing that all these dependencies 
and the function forms are valid, then the ensemble 
modeling equation should take the form of Eqn. 6:
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ln𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒 = ∑ ln 𝑥𝑥𝑖𝑖𝑖𝑖                           (6) 
 
Γ(𝐸𝐸)  =  𝛼𝛼Γ𝑟𝑟(𝐸𝐸) + 𝛽𝛽Γ𝑐𝑐(𝐸𝐸)                (7) 
 
𝑚𝑚 = 0.17 ln 𝑇𝑇2𝐿𝐿𝐿𝐿 − 0.29 ln𝜙𝜙                    (10) 
 
𝑚𝑚 = 0.2 ln 𝑇𝑇2𝐿𝐿𝐿𝐿 − 0.29 ln𝜙𝜙                 (12) 
 
ln 𝑘𝑘 = 𝑎𝑎 + 𝑏𝑏1 ln𝜙𝜙 + 𝑏𝑏2 ln𝜙𝜙𝑚𝑚𝑚𝑚𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑏𝑏3 ln𝑇𝑇2𝐿𝐿𝐿𝐿                  (19) 
 
𝑘𝑘 = 0.5𝜙𝜙2(𝜌𝜌𝑇𝑇2𝐿𝐿𝐿𝐿)2                      (22) 
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Then, we use this function form to refit all available 
training data (i.e., obtain a, b1, b2, and b3) to obtain: 
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𝑘𝑘 = 26.37𝜙𝜙0.72𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
0.85 𝑇𝑇2𝐿𝐿𝐿𝐿

0.76   (20) 
 

𝑘𝑘 = 1394𝜙𝜙2.26𝑒𝑒0.95𝑚𝑚𝑚𝑚𝑚𝑚[−2.19, 5.35+ln 𝜙𝜙+3.98ln(𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝜙𝜙 )].          (21) 

 
𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝜙𝜙  

 
k = 0.5Ф2(𝜌𝜌T2LM)2                   (22) 
 

𝑘𝑘 = 𝐶𝐶𝜙𝜙2 ( 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝜙𝜙−𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

)
2
           (23) 

 

𝑘𝑘 = 1088 ( 𝑉𝑉𝑝𝑝
5000)

7.43
𝜙𝜙4.23 exp −12.85

ln 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
             (24) 

 
 
𝑘𝑘 = 33.4𝜙𝜙3.09 exp 8.8 ln 𝜙𝜙

ln 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
.   (25) 
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Using this prediction equation, the performance is im-
proved to R2 = 0.75, better than any of the individual 
instances. Figure 12 shows a comparison of the predicted 
k and measured k.

While ensemble modeling visibly improves model 
performances, to this point, our attempts on this prob-
lem were initially limited in the function form selec-
tion. The simple model form is always worth the effort 
to try initially, as a baseline for comparing with more 
complicated models.

In the next attempt, we want to see if the model can 
improve visibly by inclusion of max and min operators, 
which allows conditional branching. A new equation is 
obtained as:
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7.43
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ln 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
.   (25) 
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 > –2.19 are plotted in a blue cross symbol. This 
plot shows that the yellow symbol represents samples 
whose macropore is only a small fraction of its total 

porosity, while the rest of the samples all have a larger 
fraction of macropores. 

Being able to examine the physical meaning of the SR 
delivered prediction equation certainly gives us a means 
to evaluate the rational of conditional branching. Such 
capability is absent from any black box AI methods. 
Recalling that Gomaa et al. (2006)1 has developed an 
empirical k model from a similar rock type based on 
a large number of experimental data, they found two 
equations: Equation 22 for mesopore and micropore 
dominated carbonate rocks and Eqn. 23 for macropore 
dominated carbonates.
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While these two equations differ in form from Eqn. 21 
obtained with SR, the branching conditions have similar 
physical meaning. Empirically obtaining conditional 
branched equations usually is not a trivial task. It takes 
a lot of data and experience. In the case of Eqns. 22 and 
23, the two forms of the equations resemble the two 
popularly used SDR and Coates4 models, respectively, 
and branched condition is basically to find out which 
one of them is better applicable in which branching con-
dition. On the other hand, using the SR method and 
obtaining a conditional branching equation does not 
require particular petrophysical experience, letting the 
data to speak for itself whether the branching is needed 
and what the expression is for the condition.

With Eqn. 21, the prediction performance is much im-
proved to R2 = 0.85, better than the ensemble modeling 
derived with Eqn. 20. Figure 14 shows the comparison 
of the predicted vs. the measured results. 

Although Eqn. 21 already meets our expectation, in 
general, we would like to try various different ways of 
training to obtain multiple prediction equations for the 
same target parameter. These different ways of training 
may include a different subset of input variables, inclusive 
or exclusive of certain mathematical function forms, 

Fig. 12  The ensemble model predicted k vs. measured k.
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Fig. 12  The ensemble model predicted k vs. measured k. 
 
 
 

 
 
Fig. 13  Examination of two key input variables for helping understand the physical meaning of the 
branching condition. 
 
 

 
 
Fig. 14  The predicted k using conditional branching Eqn. 22 vs. measured k. 
 

Fig. 13  Examination of two key input variables for helping understand the physical 
meaning of the branching condition.
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Fig. 12  The ensemble model predicted k vs. measured k. 
 
 
 

 
 
Fig. 13  Examination of two key input variables for helping understand the physical meaning of the 
branching condition. 
 
 

 
 
Fig. 14  The predicted k using conditional branching Eqn. 22 vs. measured k. 
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and/or with different termination conditions. Two such 
attempts yield two new equations, respectively: 
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The corresponding performance comparisons are 
shown in Fig. 15 and Fig. 16, respectively.

Equation 24 is obtained with the inclusion of the sonic 
measurement Vp in SR process. Equation 25 is obtained 

by including the exponential operator in the SR process. 
In the described applications of the SR-based model 
equation development process, several mathematically 
equally valid equations are created due to the random 
nature of genetic programming processes, the customized 
inclusion of initial elementary functions and operators. 
Naturally, one may raise the question of “Which one 
is optimal to use?” The answer is not always straight-
forward, therefore we apply the model discrimination 
process, previously described, to help us to decide.

The mathematical complexity for Eqns. 24 and 25 are 
Level 5 and Level 7, respectively. From a measurement 
complexity point of view, Eqn. 24 contains three input 
variables (three types of measurements: Vp, 

 

 

 

Saudi Aramco: Public 

 
𝐹𝐹 = 𝑅𝑅0

𝑅𝑅𝑤𝑤
= 𝑎𝑎

𝜙𝜙𝑚𝑚     (1) 
 
𝜎𝜎𝑡𝑡 𝜎𝜎𝑤𝑤⁄ = 𝜙𝜙𝑚𝑚𝑆𝑆𝑤𝑤𝑛𝑛/𝐴𝐴,   (2) 
 
𝜎𝜎𝑡𝑡 and 𝜎𝜎𝑤𝑤 
 
𝑘𝑘 = 𝐶𝐶(𝜙𝜙𝑁𝑁𝑁𝑁𝑅𝑅)𝑎𝑎(𝑇𝑇2𝐺𝐺𝑁𝑁)𝑏𝑏,     (3) 
 
𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝜙𝜙  

 
𝑀𝑀𝑒𝑒𝑛𝑛𝑒𝑒 = ∑ 𝑐𝑐𝑚𝑚𝑚𝑚 𝑀𝑀𝑚𝑚     (4) 
 
𝑀𝑀𝑚𝑚 = ∏ 𝐴𝐴𝑚𝑚,𝑘𝑘𝑘𝑘 𝑥𝑥𝑘𝑘

𝑒𝑒𝑘𝑘    (5) 
 
𝑙𝑙𝑙𝑙𝑙𝑙𝑀𝑀𝑒𝑒𝑛𝑛𝑒𝑒 = ∑ 𝑐𝑐𝑚𝑚𝑚𝑚 𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥𝑚𝑚   (6) 
 
C(E) = aCr(E) + βCc(E)                  (7) 
 

𝐹𝐹 = a
𝜙𝜙𝑚𝑚 = 2.53

𝜙𝜙1.40   (8) 
 

𝐹𝐹 = 2.59
𝜙𝜙𝑚𝑚     (9) 

 
m = 0.17 log T2LM – 0.29 log Ф.               (10) 
 
𝐹𝐹 = 2.09

𝜙𝜙𝑚𝑚     (11) 
 
m = 0.2 log T2GM – 0.29 log Ф.              (12) 
 

𝐹𝐹 = 𝑉𝑉𝑝𝑝1.38

𝑒𝑒10.52𝐹𝐹𝐹𝐹𝐹𝐹0.37𝜙𝜙0.91   (13) 
 
 

𝐹𝐹 = 𝑉𝑉𝑝𝑝1.15

𝑒𝑒8.75𝜙𝜙1.44,   (14) 
 
𝑘𝑘 = 0.68𝜙𝜙1.16𝑇𝑇2𝐿𝐿𝑁𝑁1.09   (15) 
 
𝑘𝑘 = 0.037𝜙𝜙𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

0.55 𝑇𝑇2𝐿𝐿𝑁𝑁1.65   (16) 
 
𝑘𝑘 = 1012𝜙𝜙 ∙ 𝜙𝜙𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

0.56    (17) 
 
𝑘𝑘 = 0.037𝜙𝜙𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

0.55 𝑇𝑇2𝐿𝐿𝑁𝑁1.65   (18) 
 
1n k = a + b1 1n Ф + b2 1n Фmacro + b3 1n T2LM                (19) 
 

, and 

 

 

 

Saudi Aramco: Public 

 
𝐹𝐹 = 𝑅𝑅0

𝑅𝑅𝑤𝑤
= 𝑎𝑎

𝜙𝜙𝑚𝑚     (1) 
 
𝜎𝜎𝑡𝑡 𝜎𝜎𝑤𝑤⁄ = 𝜙𝜙𝑚𝑚𝑆𝑆𝑤𝑤𝑛𝑛/𝐴𝐴,   (2) 
 
𝜎𝜎𝑡𝑡 and 𝜎𝜎𝑤𝑤 
 
𝑘𝑘 = 𝐶𝐶(𝜙𝜙𝑁𝑁𝑁𝑁𝑅𝑅)𝑎𝑎(𝑇𝑇2𝐺𝐺𝑁𝑁)𝑏𝑏,     (3) 
 
𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝜙𝜙  

 
𝑀𝑀𝑒𝑒𝑛𝑛𝑒𝑒 = ∑ 𝑐𝑐𝑚𝑚𝑚𝑚 𝑀𝑀𝑚𝑚     (4) 
 
𝑀𝑀𝑚𝑚 = ∏ 𝐴𝐴𝑚𝑚,𝑘𝑘𝑘𝑘 𝑥𝑥𝑘𝑘

𝑒𝑒𝑘𝑘    (5) 
 
𝑙𝑙𝑙𝑙𝑙𝑙𝑀𝑀𝑒𝑒𝑛𝑛𝑒𝑒 = ∑ 𝑐𝑐𝑚𝑚𝑚𝑚 𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥𝑚𝑚   (6) 
 
C(E) = aCr(E) + βCc(E)                  (7) 
 

𝐹𝐹 = a
𝜙𝜙𝑚𝑚 = 2.53

𝜙𝜙1.40   (8) 
 

𝐹𝐹 = 2.59
𝜙𝜙𝑚𝑚     (9) 

 
m = 0.17 log T2LM – 0.29 log Ф.               (10) 
 
𝐹𝐹 = 2.09

𝜙𝜙𝑚𝑚     (11) 
 
m = 0.2 log T2GM – 0.29 log Ф.              (12) 
 

𝐹𝐹 = 𝑉𝑉𝑝𝑝1.38

𝑒𝑒10.52𝐹𝐹𝐹𝐹𝐹𝐹0.37𝜙𝜙0.91   (13) 
 
 

𝐹𝐹 = 𝑉𝑉𝑝𝑝1.15

𝑒𝑒8.75𝜙𝜙1.44,   (14) 
 
𝑘𝑘 = 0.68𝜙𝜙1.16𝑇𝑇2𝐿𝐿𝑁𝑁1.09   (15) 
 
𝑘𝑘 = 0.037𝜙𝜙𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

0.55 𝑇𝑇2𝐿𝐿𝑁𝑁1.65   (16) 
 
𝑘𝑘 = 1012𝜙𝜙 ∙ 𝜙𝜙𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

0.56    (17) 
 
𝑘𝑘 = 0.037𝜙𝜙𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

0.55 𝑇𝑇2𝐿𝐿𝑁𝑁1.65   (18) 
 
1n k = a + b1 1n Ф + b2 1n Фmacro + b3 1n T2LM                (19) 
 

macro), 
but Eqn. 25 contains two input variables (two types of 
measurements: 

 

 

 

Saudi Aramco: Public 

 
𝐹𝐹 = 𝑅𝑅0

𝑅𝑅𝑤𝑤
= 𝑎𝑎

𝜙𝜙𝑚𝑚     (1) 
 
𝜎𝜎𝑡𝑡 𝜎𝜎𝑤𝑤⁄ = 𝜙𝜙𝑚𝑚𝑆𝑆𝑤𝑤𝑛𝑛/𝐴𝐴,   (2) 
 
𝜎𝜎𝑡𝑡 and 𝜎𝜎𝑤𝑤 
 
𝑘𝑘 = 𝐶𝐶(𝜙𝜙𝑁𝑁𝑁𝑁𝑅𝑅)𝑎𝑎(𝑇𝑇2𝐺𝐺𝑁𝑁)𝑏𝑏,     (3) 
 
𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝜙𝜙  

 
𝑀𝑀𝑒𝑒𝑛𝑛𝑒𝑒 = ∑ 𝑐𝑐𝑚𝑚𝑚𝑚 𝑀𝑀𝑚𝑚     (4) 
 
𝑀𝑀𝑚𝑚 = ∏ 𝐴𝐴𝑚𝑚,𝑘𝑘𝑘𝑘 𝑥𝑥𝑘𝑘

𝑒𝑒𝑘𝑘    (5) 
 
𝑙𝑙𝑙𝑙𝑙𝑙𝑀𝑀𝑒𝑒𝑛𝑛𝑒𝑒 = ∑ 𝑐𝑐𝑚𝑚𝑚𝑚 𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥𝑚𝑚   (6) 
 
C(E) = aCr(E) + βCc(E)                  (7) 
 

𝐹𝐹 = a
𝜙𝜙𝑚𝑚 = 2.53

𝜙𝜙1.40   (8) 
 

𝐹𝐹 = 2.59
𝜙𝜙𝑚𝑚     (9) 

 
m = 0.17 log T2LM – 0.29 log Ф.               (10) 
 
𝐹𝐹 = 2.09

𝜙𝜙𝑚𝑚     (11) 
 
m = 0.2 log T2GM – 0.29 log Ф.              (12) 
 

𝐹𝐹 = 𝑉𝑉𝑝𝑝1.38

𝑒𝑒10.52𝐹𝐹𝐹𝐹𝐹𝐹0.37𝜙𝜙0.91   (13) 
 
 

𝐹𝐹 = 𝑉𝑉𝑝𝑝1.15

𝑒𝑒8.75𝜙𝜙1.44,   (14) 
 
𝑘𝑘 = 0.68𝜙𝜙1.16𝑇𝑇2𝐿𝐿𝑁𝑁1.09   (15) 
 
𝑘𝑘 = 0.037𝜙𝜙𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

0.55 𝑇𝑇2𝐿𝐿𝑁𝑁1.65   (16) 
 
𝑘𝑘 = 1012𝜙𝜙 ∙ 𝜙𝜙𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

0.56    (17) 
 
𝑘𝑘 = 0.037𝜙𝜙𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

0.55 𝑇𝑇2𝐿𝐿𝑁𝑁1.65   (18) 
 
1n k = a + b1 1n Ф + b2 1n Фmacro + b3 1n T2LM                (19) 
 

 and 

 

 

 

Saudi Aramco: Public 

 
𝐹𝐹 = 𝑅𝑅0

𝑅𝑅𝑤𝑤
= 𝑎𝑎

𝜙𝜙𝑚𝑚     (1) 
 
𝜎𝜎𝑡𝑡 𝜎𝜎𝑤𝑤⁄ = 𝜙𝜙𝑚𝑚𝑆𝑆𝑤𝑤𝑛𝑛/𝐴𝐴,   (2) 
 
𝜎𝜎𝑡𝑡 and 𝜎𝜎𝑤𝑤 
 
𝑘𝑘 = 𝐶𝐶(𝜙𝜙𝑁𝑁𝑁𝑁𝑅𝑅)𝑎𝑎(𝑇𝑇2𝐺𝐺𝑁𝑁)𝑏𝑏,     (3) 
 
𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝜙𝜙  

 
𝑀𝑀𝑒𝑒𝑛𝑛𝑒𝑒 = ∑ 𝑐𝑐𝑚𝑚𝑚𝑚 𝑀𝑀𝑚𝑚     (4) 
 
𝑀𝑀𝑚𝑚 = ∏ 𝐴𝐴𝑚𝑚,𝑘𝑘𝑘𝑘 𝑥𝑥𝑘𝑘

𝑒𝑒𝑘𝑘    (5) 
 
𝑙𝑙𝑙𝑙𝑙𝑙𝑀𝑀𝑒𝑒𝑛𝑛𝑒𝑒 = ∑ 𝑐𝑐𝑚𝑚𝑚𝑚 𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥𝑚𝑚   (6) 
 
C(E) = aCr(E) + βCc(E)                  (7) 
 

𝐹𝐹 = a
𝜙𝜙𝑚𝑚 = 2.53

𝜙𝜙1.40   (8) 
 

𝐹𝐹 = 2.59
𝜙𝜙𝑚𝑚     (9) 

 
m = 0.17 log T2LM – 0.29 log Ф.               (10) 
 
𝐹𝐹 = 2.09

𝜙𝜙𝑚𝑚     (11) 
 
m = 0.2 log T2GM – 0.29 log Ф.              (12) 
 

𝐹𝐹 = 𝑉𝑉𝑝𝑝1.38

𝑒𝑒10.52𝐹𝐹𝐹𝐹𝐹𝐹0.37𝜙𝜙0.91   (13) 
 
 

𝐹𝐹 = 𝑉𝑉𝑝𝑝1.15

𝑒𝑒8.75𝜙𝜙1.44,   (14) 
 
𝑘𝑘 = 0.68𝜙𝜙1.16𝑇𝑇2𝐿𝐿𝑁𝑁1.09   (15) 
 
𝑘𝑘 = 0.037𝜙𝜙𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

0.55 𝑇𝑇2𝐿𝐿𝑁𝑁1.65   (16) 
 
𝑘𝑘 = 1012𝜙𝜙 ∙ 𝜙𝜙𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

0.56    (17) 
 
𝑘𝑘 = 0.037𝜙𝜙𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

0.55 𝑇𝑇2𝐿𝐿𝑁𝑁1.65   (18) 
 
1n k = a + b1 1n Ф + b2 1n Фmacro + b3 1n T2LM                (19) 
 

macro). 

 

 

 

Saudi Aramco: Public 

 
𝐹𝐹 = 𝑅𝑅0

𝑅𝑅𝑤𝑤
= 𝑎𝑎

𝜙𝜙𝑚𝑚     (1) 
 
𝜎𝜎𝑡𝑡 𝜎𝜎𝑤𝑤⁄ = 𝜙𝜙𝑚𝑚𝑆𝑆𝑤𝑤𝑛𝑛/𝐴𝐴,   (2) 
 
𝜎𝜎𝑡𝑡 and 𝜎𝜎𝑤𝑤 
 
𝑘𝑘 = 𝐶𝐶(𝜙𝜙𝑁𝑁𝑁𝑁𝑅𝑅)𝑎𝑎(𝑇𝑇2𝐺𝐺𝑁𝑁)𝑏𝑏,     (3) 
 
𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝜙𝜙  

 
𝑀𝑀𝑒𝑒𝑛𝑛𝑒𝑒 = ∑ 𝑐𝑐𝑚𝑚𝑚𝑚 𝑀𝑀𝑚𝑚     (4) 
 
𝑀𝑀𝑚𝑚 = ∏ 𝐴𝐴𝑚𝑚,𝑘𝑘𝑘𝑘 𝑥𝑥𝑘𝑘

𝑒𝑒𝑘𝑘    (5) 
 
𝑙𝑙𝑙𝑙𝑙𝑙𝑀𝑀𝑒𝑒𝑛𝑛𝑒𝑒 = ∑ 𝑐𝑐𝑚𝑚𝑚𝑚 𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥𝑚𝑚   (6) 
 
C(E) = aCr(E) + βCc(E)                  (7) 
 

𝐹𝐹 = a
𝜙𝜙𝑚𝑚 = 2.53

𝜙𝜙1.40   (8) 
 

𝐹𝐹 = 2.59
𝜙𝜙𝑚𝑚     (9) 

 
m = 0.17 log T2LM – 0.29 log Ф.               (10) 
 
𝐹𝐹 = 2.09

𝜙𝜙𝑚𝑚     (11) 
 
m = 0.2 log T2GM – 0.29 log Ф.              (12) 
 

𝐹𝐹 = 𝑉𝑉𝑝𝑝1.38

𝑒𝑒10.52𝐹𝐹𝐹𝐹𝐹𝐹0.37𝜙𝜙0.91   (13) 
 
 

𝐹𝐹 = 𝑉𝑉𝑝𝑝1.15

𝑒𝑒8.75𝜙𝜙1.44,   (14) 
 
𝑘𝑘 = 0.68𝜙𝜙1.16𝑇𝑇2𝐿𝐿𝑁𝑁1.09   (15) 
 
𝑘𝑘 = 0.037𝜙𝜙𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

0.55 𝑇𝑇2𝐿𝐿𝑁𝑁1.65   (16) 
 
𝑘𝑘 = 1012𝜙𝜙 ∙ 𝜙𝜙𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

0.56    (17) 
 
𝑘𝑘 = 0.037𝜙𝜙𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

0.55 𝑇𝑇2𝐿𝐿𝑁𝑁1.65   (18) 
 
1n k = a + b1 1n Ф + b2 1n Фmacro + b3 1n T2LM                (19) 
 

 can be obtained from 
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macro 
can be obtained by NMR only, and Vp by sonic only.

Therefore, using Eqn. 24 requires at least inputs from 
two logging tools, but Eqn. 25 requires only NMR data. 
Consequently, the physics complexity level for Eqn. 25 is 
lower than that of Eqn. 24. This, together with a higher 
model performance (R2 = 0.84 for Eqn. 25 vs. R2 = 0.75 
for Eqn. 24), the preference goes to Eqn. 25.

This model discrimination process potentially can 
be automatized by a defined physics complexity level 
and a quantitative score, based on a customized formu-
la considering the cost of a particular type of logging 
measurements, data availability, and data reliability. Such 
quantitative scoring is likely to be varied for different 
operators. For instance, NMR logging is routinely ac-
quired for carbonate reservoirs, but in another type of 
formation, it is not always available.

In this article, we only used R2 for model performance 
comparison, while other error metrics can also be used 

Fig. 14  The predicted k using conditional branching Eqn. 22 
vs. measured k.
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Fig. 12  The ensemble model predicted k vs. measured k. 
 
 
 

 
 
Fig. 13  Examination of two key input variables for helping understand the physical meaning of the 
branching condition. 
 
 

 
 
Fig. 14  The predicted k using conditional branching Eqn. 22 vs. measured k. 
 

Fig. 15  The predicted k by Eqn. 24 vs. measured k.
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Fig. 16  The predicted k by Eqn. 25 vs. measured k. 
 
 
 
 
 
 
 
 
 

Fig. 16  The predicted k by Eqn. 25 vs. measured k.
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to replace or used in addtion to R2 as the performance 
measure(s).

Conclusions
In this article, we described a new, non-black box, AI-
based petrophysical interpretation model development 
methodology, which consists of five components each for 
a distinguished purpose. Correlation heat maps are used 
to optimize the model input variables pool, and genetic 
programming-based SR algorithms are applied, which 
combines multiphysics measurement data objectively 
in creating the model though random processes. The 
delivered model is an equation allowing petrophysicists to 
evaluate the rational of such an equation. The ensemble 
modeling approach is incorporated in the workflow as 
an option, which is particularly useful when the training 
data set is small, and/or correlation between the input 
and the target is marginal.

By designing the primitive set of function forms and 
operators based on measurement physics knowledge and 
formation complexity, one may obtain a different level of 
complexity equations. To non-objectively determine the 
optimal model, a model discrimination framework is de-
veloped, which weighs collectively on equation complex-
ity, measurement complexity, and model performance.

The new method has been applied to a carbonate data 
set for F and k prediction. The core measurement data 
used in the study are all logging deliverable equivalents. 
Therefore, even though for training purpose core data 
are used, the developed models are readily applicable 
to logging data interpretation. 

The article went through in great detail why and how 
every component of the workflow are used. The applica-
tion examples demonstrated that the SR-based method 
can be used to improve existing interpretation models 
by incorporating logging measurement to capture con-
tinuous variation of model parameters, as well as create 
new equations that are not constrained by the known 
equations, even with conditional branching.
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