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The objective of this study is to utilize drilling parameters and gamma ray (GR) well logs to predict 
compressional and shear sonic logs while drilling using machine learning techniques. Surface drilling 
parameters and various wellbore logs of 10 horizontal gas wells were used in this study to train the machine 
learning model. The drilling parameters include the rate of penetration (ROP), weight on bit (WOB), 
drillpipe rotation (rpm), torque (TOR), standpipe pressure (SPP), and mud flow rate (gpm). 

Petrophysical logs included GR, compressional wave slowness (DTCO), and shear wave slowness 
(DTSM). The GR and drilling parameters were used as inputs in the model, with the model output 
being DTCO and DTSM. The model was trained with the XGBoost algorithm (Extreme Gradient 
Boosting), and the prediction results on two blind wells showed an average absolute percentage error of 
less than 10%. Utilizing drilling parameters to predict well logs could have a significant business impact. 
This study demonstrates the application of machine learning for log prediction using drilling parameters 
in deep, long horizontal gas wells.
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Introduction
To accurately determine the rock mechanical and petrophysical properties is crucial in mitigating drilling risks 
and optimizing well productivity. Compressional and shear sonic travel-time logs are critical rock petrophysical 
parameters, especially when it comes to formation evaluation and rock characterization for geophysical applications 
to predict rock elastic properties1, 2. Poor prediction of sonic log parameters may lead to the improper estimation 
of rock elastic parameters, resulting in severe consequences in investment decisions3.

Compressional and shear sonic logs are available post-drilling using wireline logs that are often missing or 
incomplete. These detain the analysis to evaluate certain rock characteristics to determine elastic properties and 
in situ stresses. Due to the time and cost involved in logging, the industry benefits from using more efficient tech-
nologies to obtain compressional and shear sonic logs. Therefore, the industry relies on empirical correlations or 
machine learning models to estimate the values of the compressional and shear acoustic logs. Available correlations 
to estimate sonic travel-time vary significantly, making it universally unacceptable for log analysts to use these 
correlations instead of running wireline logs4, 5.

Unlike wireline logs, surface drilling parameters are available in real-time and can be used to the industry’s ad-
vantage. Measured surface drilling parameters are the most underutilized upstream data in oil and gas operations. 
Few studies have recently demonstrated the potential of using drilling parameters to estimate various reservoir 
parameters6, 7. The industry is gradually moving toward using machine learning-based analysis and working on 
replacing measured parameters with AI-based data. 

Many studies reported different models such as Random Forest, artificial neural networks, and the Adaptive 
Neuro-Fuzzy Inference System to predict sonic log parameters. Recent studies discussed the advantages of using 
machine learning techniques in generating synthetic sonic logs using surface drilling parameters and machine 
learning techniques8; however, these studies were focused on shallow vertical wells9 and short horizontal sections10. 

The objective of this study is to utilize drilling parameters and gamma ray (GR) well logs to predict sonic well 
logs while drilling using machine learning techniques. In this study, a total of 12 wells were used for training and 
testing the AI model. All the data used are for deep, long horizontal gas wells with laterals of approximately 3,000 
ft in sandstone fields. 

Methodology
The prediction of sonic logs, compressional, and shear travel-time logs was conducted using available surface 
drilling parameters and various well logs from different wells to train a machine learning model in Python. The 
model was first trained with multiple machine learning algorithms to best fit the predicted data with the measured 
data. The model with the highest accuracy was chosen for the blind prediction. The accuracy of the model was 
evaluated based on the mean absolute error (MAE), average absolute percentage error (AAPE), and root mean 
squared error (RMSE).

The first step is data processing, including cleaning, combining, and splitting the data into training data and 
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testing data. Data processing is the most important step 
where corrupted or unrealistic data are removed to im-
prove the prediction model’s performance. The model 
contained 12 wells; 10 wells were used in training with 
363,087 data points and two wells for blind testing the 
model’s results. The algorithm was first trained using 
a range of surface drilling parameter data for different 
wells to quantify their sensitivity toward the measured 
sonic data. The input parameters in the model training 
included the rate of penetration (ROP), weight on bit 
(WOB), drillpipe rotation (rpm), torque (TOR), stand-
pipe pressure (SPP), and mud flow rate (gpm). Well logs 
included GR, compressional wave slowness (DTCO), 
and shear wave slowness (DTSM). The GR and drilling 
parameters were used as inputs in the model, with model 
outputs being DTCO and DTSM.

Using 10 deep horizontal wells, the machine learning 
model was trained with the XGBoost algorithm (Extreme 
Gradient Boosting). DTCO was predicted first, and 
then DTSM, since only one parameter at a time can 
be predicted using the XGBoost algorithm. The model 
included seven relevant input parameters — GR and 
six drilling parameters — to make the prediction. The 
model was fine-tuned for hyperparameters and checked 
for robustness by training on nine wells and predicting 
one well before making the blind prediction for two wells 
for testing.

Results
The first step after cleaning the data was to use a range of 
surface drilling parameter data for the model’s inputs and 

check for correlations between input parameters and out-
put parameters. Figure 1 is a summary of different input 
parameters for the model with their Pearson correlation 
coefficients to other input parameters. Highlighted in red 
is the correlation between DTCO and DTSM, output 
parameters, surface drilling parameters, and GR. This 
figure clearly shows that the DTCO correlates better to 
the input parameters than the DTSM.

The machine learning model was trained with the 
XGBoost algorithm using 10 deep horizontal wells for 
training (Wells d1 to d10) and two horizontal wells for 
testing (Wells d11 and d12). The developed model was eval-
uated by MAE, RMSE, and AAPE across the training 
and testing wells. The model was checked for robustness 
by training on nine wells and predicting one well using 
the training data to check for variations across all wells 
before testing the two blind wells. Figures 2 to 6 illus-
trate the predicted sonic in red vs. actual sonic logs in 
blue for each of the 10 wells used in the training model.

Figures 7 and 8 show the variation of the MAE, RMSE, 
and AAPE for the predicted DTCO and DTSM, re-
spectively. On average, for the 10 training wells (Wells 
d1 to d10), the compressional sonic log prediction was 
1.748 ft in terms of RMSE, 1.312 ft in terms of MAE, and 
2.358% for AAPE. On the other hand, the shear sonic 
log prediction was 15.797 ft in terms of RMSE, 10.397 
ft in terms of MAE, and 8.298% for AAPE, on average 
for the 10 training wells (Wells d1 to d10). 

The prediction results across the training wells sug-
gest that predicting DTCO is more straightforward  
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Fig. 1  The Pearson correlation coefficients between input and output parameters. Highlighted in red is 
the correlation between the DTCO and DTSM, output parameters, surface drilling parameters, and GR. 
 
 
 
 

Fig. 1  The Pearson correlation coefficients between input and output parameters. Highlighted in red is the correlation between the DTCO and DTSM, 
output parameters, surface drilling parameters, and GR.
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Fig. 2  The measured and predicted (_P) sonic logs for training wells d1 (top) and d2 (bottom). 
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Fig. 2  The measured and predicted (_P) sonic logs for training wells d1 (top) and d2 (bottom). 
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Fig. 11  The log data for the blind prediction of Well-d11 (top) and Well-d12 (bottom). GR is in gAPI, TOR 
is in 1,000 lbf, SPP is in psi, ROP is in ft/h, WOB is in 1,000 lbf, gpm is mud flow rate in 1/min, rpm is 
drillpipe rotation in c/min, DTCO and DTCO_P are the actual and predicted compressional wave 
slowness, respectively, and in ft, DTSM and DTSM_P are the actual and predicted shear wave slowness 
in ft, respectively. 
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slowness, respectively, and in ft, DTSM and DTSM_P are the actual and predicted shear wave slowness 
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Fig. 3  The measured and predicted (_P) sonic logs for training wells d3 (top) and d4 (bottom). 
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slowness, respectively, and in ft, DTSM and DTSM_P are the actual and predicted shear wave slowness 
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Fig. 4  The measured and predicted (_P) sonic logs for training wells d5 (top) and d6 (bottom). 

 

 

Saudi Aramco: Public 

 
Fig. 4  The measured and predicted (_P) sonic logs for training wells d5 (top) and d6 (bottom). 
 
 
 

3,
50

0 
ft

 
4,

50
0 

ft
 

 

 

 

Saudi Aramco: Public 

 
 

    
Fig. 11  The log data for the blind prediction of Well-d11 (top) and Well-d12 (bottom). GR is in gAPI, TOR 
is in 1,000 lbf, SPP is in psi, ROP is in ft/h, WOB is in 1,000 lbf, gpm is mud flow rate in 1/min, rpm is 
drillpipe rotation in c/min, DTCO and DTCO_P are the actual and predicted compressional wave 
slowness, respectively, and in ft, DTSM and DTSM_P are the actual and predicted shear wave slowness 
in ft, respectively. 
 
 

2,
50

0 
ft

 
3,

00
0 

ft
 

 

 

 

Saudi Aramco: Public 

 
Fig. 4  The measured and predicted (_P) sonic logs for training wells d5 (top) and d6 (bottom). 
 
 
 

3,
50

0 
ft

 
4,

50
0 

ft
 

 

 

 

Saudi Aramco: Public 

 
 

    
Fig. 11  The log data for the blind prediction of Well-d11 (top) and Well-d12 (bottom). GR is in gAPI, TOR 
is in 1,000 lbf, SPP is in psi, ROP is in ft/h, WOB is in 1,000 lbf, gpm is mud flow rate in 1/min, rpm is 
drillpipe rotation in c/min, DTCO and DTCO_P are the actual and predicted compressional wave 
slowness, respectively, and in ft, DTSM and DTSM_P are the actual and predicted shear wave slowness 
in ft, respectively. 
 
 

2,
50

0 
ft

 
3,

00
0 

ft
 



7 The Aramco Journal of Technology Spring 2023

Fig. 5  The measured and predicted (_P) sonic logs for training wells d7 (top) and d8 (bottom). 
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Fig. 6  The measured and predicted (_P) sonic logs for training wells d9 (top) and d10 (bottom). 
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than predicting DTSM. This was expected since the 
DTCO had a better correlation with input parameters 
than DTSM.

Training wells d5, d6, d7, and d8, showed the highest 
prediction error results for DTSM in AAPE. Among 
those four wells, Well-d6 had the highest AAPE of 22.6% 
for the predicted DTSM. The four wells were all deeper 
wells where the predicted values of the DTSM fluctuated 
significantly with either highly overestimated or highly 
underestimated values compared to the measured DTSM. 
Implementing upper and lower bounds on predicted 
values within the algorithm could minimize such fluc-
tuations in predicted values.

Figures 9 and 10 show cross plots of the predicted sonic 
logs for blind wells d11 and d12 vs. the actual measured 
sonic logs, respectively. Table 1 is a summary of the error 
across the blind-tested wells. Figure 11 displays the GR, 
drilling parameters, and the measured and predicted 

sonic logs for the two blind wells. The testing results 
showed an AAPE of less than 10% for the predicted 
values of the DTCO and DTSM in the two blind wells. 

Conclusions
Based on the data set used in this study, predicting DTCO 
and DTSM in deep, long horizontal gas wells appears 
more challenging than in shallower, vertical wells or short 
horizontal sections discussed in the literature. This study 
shows that it is possible to predict sonic logs using only 
GR and drilling parameters in long laterals. Utilizing 
drilling data with better quality could potentially improve 
the prediction capability.

When drilling new wells, GR and drilling parameters 
are almost always available. Utilizing this data to pre-
dict well logs could have a significant business impact 
by minimizing or eliminating the need to run logging 
while drilling well logs in mature fields as a cost saving 
measure for new planned wells.
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Fig. 7  The prediction error of the compressional sonic log across the training wells (Wells d1 to d10) and 
the testing wells (Wells d11 and d12). 
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Fig. 7  The prediction error of the compressional sonic log across the training wells (Wells d1 to d10) and the testing wells (Wells d11 and d12).
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Fig. 8  The prediction error of the shear sonic logs across the training wells (Wells d1 to d10) and the 
testing wells (Wells d11 and d12). 
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Fig. 9  The predicted sonic log vs. actual sonic log of blind Well-d11.
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Fig. 9  The predicted sonic log vs. actual sonic log of blind Well-d11. 
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Prediction Testing Well RMSE (ft) MAE (ft) AAPE (%)

DTCO d11 4.141 3.175 6.462

DTSM d11 5.028 3.693 4.219

DTCO d12 3.746 2.711 5.298

DTSM d12 6.709 4.557 5.024

Table 1  A summary of the prediction error in the testing wells.
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Fig. 11  The log data for the blind prediction of Well-d11 (top) and Well-d12 (bottom). GR is in gAPI, TOR is in 1,000 lbf, SPP is in psi, ROP is in 
ft/h, WOB is in 1,000 lbf, gpm is mud flow rate in 1/min, rpm is drillpipe rotation in c/min, DTCO and DTCO_P are the actual and predicted 
compressional wave slowness, respectively, and in ft, DTSM and DTSM_P are the actual and predicted shear wave slowness in ft, respectively.
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