Sitting at his desk with the bright afternoon sunlight of Saudi Arabia shining into his office, Ali H. Dogru, Saudi Aramco Fellow and chief technologist at Saudi Aramco’s Exploration and Petroleum Engineering Center – Advanced Research Center (EXPEC ARC) in Dhahran reflects on his 30 years at Saudi Aramco.
“Every day I have endeavored to implement science to help deliver the energy people need,” said Dogru.
“Like the stars billions of miles away, which we can understand by applying math and science, with some of the best available technology we are working to reveal the mysteries that lie within the Earth and the flow of oil and gas. In Earth sciences, so much is still unknown, but by combining mathematics, physics, chemistry, and computer science and using some of the world’s most advanced computers, we continue to learn more about the geology beneath our feet,” Dogru says.
Dogru has a lot to work with. With the world’s largest known oil and gas reserves, and the potential for more — a significant part of the world’s energy comes from the gigantic oil and gas reservoirs in Saudi Arabia.
Modeling the Earth
Managing these assets and discovering future hydrocarbon assets requires the use of high-end technologies, computer simulation chief among them. Like weather forecasting, digital models of an underground oil or gas reservoir are built on a supercomputer, generating colorful 3-D maps showing how fluid fronts move within the reservoir.
As an input for the model, reservoir simulators require the physical description of the rocks and their properties at any point in the reservoir. The other part of the reservoir simulator is the mathematical model — highly complex mathematical algorithms describing the flow of fluids.
“Similar to a house built of bricks, a reservoir is divided into small elements called grid blocks. Using more grid blocks in a reservoir model can represent changes in rock properties more accurately. Rocks carry the fluids, so better modeled rocks yield a better description of the physics of the flow, and therefore, more accurate simulation results,” says Dogru.
“For giant reservoirs, we need to use grid blocks in the order of millions, billions, and more, to properly model the reservoir and fluid movement. Not only is this process very expensive, but in some cases it is just not possible.”
“Building a credible model of a gigantic reservoir requires a collection of vast amounts of rock, fluid, geological, and seismic data, as well. The size of the data is much bigger compared to a regular reservoir anywhere in the world.”
Applying multiple disciplines
Dogru says working to understand the geology across Saudi Arabia requires the application of multiple disciplines.
“It really is fascinating work, utilizing some of the world’s most advanced supercomputers, which I have been very fortunate to have at my disposal, enabling me and my team in Dhahran and in the U.S. to work on fascinating scientific challenges.”